4.8 Article

Multi-modal characterization methods of solid-electrolyte interphase in silicon-graphite composite electrodes

期刊

JOURNAL OF POWER SOURCES
卷 564, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jpowsour.2023.232804

关键词

Solid electrolyte interphase; Surface characterization; Silicon electrodes; Lithium ion batteries

向作者/读者索取更多资源

In this study, the SEI on composite Si-Gr anodes was characterized using multi-modal characterization techniques to reveal the relationship between SEI chemical composition and structure with its functional properties. By combining multiple analysis methods, a comprehensive understanding of the SEI was obtained. The study found that the SEI has a bilayer structure and a direct correlation between elemental Li and F, suggesting that most Li in the SEI exists as lithium fluoride (LiF). Furthermore, there is an inverse relationship between lithium carbonate and LiF concentration in the SEI, providing insight into the detailed chemistry of SEI formation and evolution.
Composite silicon-graphite (Si-Gr) anodes can improve battery energy density, due to Si's high gravimetric capacity, while mitigating mechanical degradation of the anode and solid-electrolyte interphase (SEI) caused by Si volumetric expansion. Optimizing these anodes is challenging, in part due to difficulty characterizing the SEI structure and composition. In this work, we present multi-modal characterization of the SEI on composite Si-Gr anodes to relate SEI chemical composition and structure to functional properties. Discrepancies in elemental concentrations from X-ray photoelectron spectroscopy, Auger electron spectroscopy, and energy-dispersive X-ray spectroscopy (EDS) are attributed to varying information depth and lateral resolution of the individual probes. However, by combining quantitative composition information with spatially resolved element mapping from scanning transmission electron microscopy, EDS, and electron energy loss spectroscopy, a holistic picture of the SEI emerges. We observe the bilayer SEI structure and a direct correlation between elemental Li and F, suggesting that most Li in the SEI exists as lithium fluoride (LiF). Further, LiF concentration is directly proportional to the maximum SEI resistivity, as determined by scanning spreading resistance microscopy. Lastly, there is an inverse relationship between lithium carbonate and LiF concentration in the SEI, providing insight into the detailed chemistry of SEI formation and evolution.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据