4.6 Article

Superconductivity in Te-Deficient ZrTe2

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 -, 期 -, 页码 -

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpcc.2c08836

关键词

-

向作者/读者索取更多资源

We investigated high-quality single crystals of ZrTe1.8 grown from isothermal chemical vapor transport, and found that the Te-deficient ZrTe1.8 exhibits superconductivity below 3.2 K. The temperature dependence of the upper critical field suggests an electron-phonon two-gap superconducting model with strong intraband coupling. The Seebeck potential measurements reveal that the charge carriers in ZrTe1.8 are predominantly negative. First-principles calculations show that the Te deficiency in ZrTe2 leads to density of states peaks at the Fermi level, promoting electronic instabilities and increasing the critical temperature.
We present structural, electrical, and thermoelectric potential measurements on high-quality single crystals of ZrTe1.8 grown from isothermal chemical vapor transport. These measurements show that the Te-deficient ZrTe1.8, which forms the same structure as the nonsuperconducting ZrTe2, is superconducting below 3.2 K. The temperature dependence of the upper critical field (Hc2) deviates from the behavior expected in conventional single-band superconductors, being best described by an electron-phonon two-gap superconducting model with strong intraband coupling. For the ZrTe1.8 single crystals, the Seebeck potential measurements suggest that the charge carriers are predominantly negative, in agreement with the ab initio calculations. Through first-principles calculations within DFT, we show that the slight reduction of Te occupancy in ZrTe2 unexpectedly gives origin to density of states peaks at the Fermi level due to the formation of localized Zr-d bands, possibly promoting electronic instabilities at the Fermi level and an increase at the critical temperature according to the standard BCS theory. These findings highlight that the Te deficiency promotes the electronic conditions for the stability of the superconducting ground state, suggesting that defects can fine-tune the electronic structure to support superconductivity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据