4.6 Article

Morphological Evolution of Gold Nanoparticles Synthesized via Solution Plasma Sputtering: Effect of Sodium Chloride Concentration and Storage Time

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 -, 期 -, 页码 -

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpcc.2c06474

关键词

-

向作者/读者索取更多资源

Morphological control of gold nanoparticles (AuNPs) synthesized via solution plasma sputtering (SPS) in sodium chloride (NaCl) solutions has been investigated. The size, distribution, and stability of AuNPs were examined over 30 days of storage. The results show that the NaCl concentration and storage time critically influence the morphological evolution and stability of AuNPs. High NaCl concentration leads to coalescence and sedimentation of AuNPs. Additionally, oxidative etching affects the size and distribution of AuNPs, with larger particles observed at higher NaCl concentrations.
Morphological control of gold nanoparticles (AuNPs) is vital for tuning their optical, chemical, physical, and catalytic properties for desired specific applications. Despite numerous efforts dedicated in recent years, controlling the morphology of AuNPs synthesized via solution plasma sputtering (SPS) remains a challenge, requiring further investigation. Herein, AuNPs were synthesized via SPS in sodium chloride (NaCl) solutions of various concentrations (0.5, 1, 2, and 5 mM). Evolutions of localized surface plasmon resonance and morphology of AuNPs over a 30 day storage period were thoroughly examined using ultraviolet-visible spectroscopy and field-emission transmission electron microscopy. The formation and growth mechanisms of AuNPs during and after synthesis provide more insights into this nascent field. At the initial storage time, AuNPs with chain-like structures were observed at all the NaCl concentrations. Their size tended to increase from 6 to 10 nm with a broader size distribution with increasing NaCl concentration. At a prolonged storage time of 15 days, AuNPs became smaller and more isolated at all NaCl concentrations owing to the oxidative etching effect. After 30 days of storage, the number of Au ions dissolved from etching slowly reduced and grew on the AuNPs, affording increased particle sizes. The interplay between etching and growth processes proceeded until reaching equilibrium. AuNPs exhibited good colloidal stability at low NaCl concentrations (i.e., 0.5, 1, and 2 mM); however, coalescence and sedimentation occurred at a high NaCl concentration of 5 mM owing to a considerable reduction in the electrical double-layer thickness. These results demonstrated that the NaCl concentration and storage time crucially affect the morphological evolution and stability of AuNPs synthesized via SPS.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据