4.6 Article

Hirshfeld Atom Refinement of Metal-Organic Complexes: Treatment of Hydrogen Atoms Bonded to Transition Metals

期刊

JOURNAL OF PHYSICAL CHEMISTRY A
卷 -, 期 -, 页码 -

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpca.2c06998

关键词

-

向作者/读者索取更多资源

The study demonstrates that using aspherical atomic scattering factors for Hirshfeld atom refinement (HAR) can systematically elongate metal-hydrogen bonds in metal-organic complexes. High-quality experimental data is crucial in obtaining significant improvements in transition metal-hydrogen bond lengths. Different refinement strategies can result in significant differences in hydrogen positions.
Hydrogen positions in hydrides play a key role in hydrogen storage materials and high-temperature superconductors. Our recently published study of five crystal structures of transition-metal-bound hydride complexes showed that using aspherical atomic scattering factors for Hirshfeld atom refinement (HAR) resulted in a systematic elongation of metal-hydrogen bonds compared to using spherical scattering factors with the Independent Atom Model (IAM). E v e n though only standard-resolution X-ray data was used, for the highest-quality data, we obtained excellent agreement between the X-ray and the neutron-derived bond lengths. We present an extended version of this study including 10 crystal structures of metal-organic complexes containing hydrogen atoms bonded to transition-metal atoms for which both X-ray and neutron data are available. The neutron structures were used as a benchmark, and the X-ray structures were refined by appl y i n g Hirshfeld atom refinement using various basis sets and DFT functionals in order to investigate the influence of the technical aspects on the length of metal-hydrogen bonds. The result of including relativistic effects in the Hamiltonian and using a cluster of multipoles simulating interactions with a crystal environment during wave function calculations was examined. The effect of the data quality on the final result was also evaluated. The study confirms that a high quality of experimental data is the key factor allowing us to obtain significant improvement in transition metal (TM)-hydrogen bond lengths from H A R in comparison with the IAM. Individual adjustments and better choices of the basis set can improve hydrogen positions. Average differences between TM- H bond lengths obtained with various DFT functionals upon including relativistic effects or between double-4' and triple-4' basis sets were not statistically significant. However, if all bonds formed by H atoms were considered, significant differences caused by different refinement strategies were observed. Finally, we examined the refinement of atomic thermal motions. Anisotropic refinement of hydrogen thermal motions with HAR was feasible only in some cases, and isotropic a l l y refined hydrogen thermal motions were in similar agreement with neutron values whether obtained with HAR or with the IAM.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据