4.6 Article

An Activating KIT Mutation Induces Crizotinib Resistance in ROS1-Positive Lung Cancer

期刊

JOURNAL OF THORACIC ONCOLOGY
卷 11, 期 8, 页码 1273-1281

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.jtho.2016.04.001

关键词

ROS1; KIT; NSCLC; Drug resistance; Tyrosine kinase inhibitor; Bypass signaling

资金

  1. Christine J. Burge Endowment for Lung Cancer Research at the University of Colorado Cancer Center
  2. Burge family
  3. Miramont Cares foundation
  4. University of Colorado Lung Cancer SPORE [P50 CA058187]
  5. University of Colorado Cancer Center [P30 CA046934]

向作者/读者索取更多资源

Introduction: Patients with non-small cell lung cancer (NSCLC) harboring ROS proto-oncogene 1, receptor tyrosine kinase gene (ROS1) chromosomal rearrangements benefit from treatment with the ROS1 inhibitor crizotinib. Limited data exist on the spectrum of resistance mechanisms in ROS1-positive NSCLC. To delineate mechanisms of acquired resistance, we analyzed biopsy samples of tumor lesions that progressed while patients were receiving crizotinib. Methods: An activating mutation in the KIT proto-oncogene receptor tyrosine kinase (KIT) (p.D816G) was identified by SNaPshot sequencing in a tumor sample from a patient with ROS1-positive NSCLC identified by fluorescence in situ hybridization whose disease progressed after initial response to crizotinib. In vitro studies included evaluation of KIT mRNA expression by quantitative reverse-transcriptase polymerase chain reactions, transduction of Ba/F3 cells and NSCLC cell lines with KIT-expressing lentiviral plasmids, immunoblotting, and cellular proliferation assays. Results: KITD816G is an activating mutation that induces autophosphorylation and cell proliferation. Expression of the mutant KITD816G receptor in ROS1-positive NSCLC cell lines led to constitutively activated KIT as measured by phosphorylation of the KIT receptor. Expression of the KITD816G rendered the HCC78 and CUTO2 cell lines resistant to crizotinib, and only dual inhibition of ROS1 and KIT with crizotinib and ponatinib could resensitize the cells to inhibition of proliferation. The oncogenic switch observed in ROS1-positive cell lines was not immediate and required pharmacologic inactivation of ROS1. Conclusions: Activation of KIT by a gain-of-function somatic mutation is a novel mechanism of resistance to crizotinib in ROS1-rearranged NSCLC. This bypass signaling pathway serves as a ROS1-independent mechanism of resistance, similarly to previously identified epidermal growth factor receptor or Kirsten rat sarcoma viral oncogene homolog/neuroblastoma RAS viral oncogene homolog signaling pathways, and can potentially be targeted by KIT inhibitors. (C) 2016 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据