4.7 Article

IL-10 production by granulocytes promotes Staphylococcus aureus craniotomy infection

期刊

JOURNAL OF NEUROINFLAMMATION
卷 20, 期 1, 页码 -

出版社

BMC
DOI: 10.1186/s12974-023-02798-7

关键词

Interleukin-10; Microglia; Granulocytes; Craniotomy infection; S. aureus

向作者/读者索取更多资源

The study found that IL-10 derived from granulocytes plays a role in suppressing the clearance of Staphylococcus aureus during craniotomy infection, possibly by inhibiting neutrophil bactericidal activity and TNF production.
Background Treatment of brain tumors, epilepsy, or hemodynamic abnormalities requires a craniotomy to access the brain. Nearly 1 million craniotomies are performed in the US annually, which increase to similar to 14 million worldwide and despite prophylaxis, infectious complications after craniotomy range from 1 to 3%. Approximately half are caused by Staphylococcus aureus (S. aureus), which forms a biofilm on the bone flap that is recalcitrant to antibiotics and immune-mediated clearance. However, the mechanisms responsible for the persistence of craniotomy infection remain largely unknown. The current study examined the role of IL-10 in promoting bacterial survival. Methods A mouse model of S. aureus craniotomy infection was used with wild type (WT), IL-10 knockout (KO), and IL-10 conditional KO mice where IL-10 was absent in microglia and monocytes/macrophages (CX3CR1(Cre)IL-10 (fl/fl)) or neutrophils and granulocytic myeloid-derived suppressor cells (G-MDSCs; Mrp8(Cre)IL-10 (fl/fl)), the major immune cell populations in the infected brain vs. subcutaneous galea, respectively. Mice were examined at various intervals post-infection to quantify bacterial burden, leukocyte recruitment, and inflammatory mediator production in the brain and galea to assess the role of IL-10 in craniotomy persistence. In addition, the role of G-MDSC-derived IL-10 on neutrophil activity was examined. Results Granulocytes (neutrophils and G-MDSCs) were the major producers of IL-10 during craniotomy infection. Bacterial burden was significantly reduced in IL-10 KO mice in the brain and galea at day 14 post-infection compared to WT animals, concomitant with increased CD4(+) and gamma delta T cell recruitment and cytokine/chemokine production, indicative of a heightened proinflammatory response. S. aureus burden was reduced in Mrp8(Cre)IL-10 (fl/fl) but not CX3CR1(Cre)IL-10 (fl/fl) mice that was reversed following treatment with exogenous IL-10, suggesting that granulocyte-derived IL-10 was important for promoting S. aureus craniotomy infection. This was likely due, in part, to IL-10 production by G-MDSCs that inhibited neutrophil bactericidal activity and TNF production. Conclusion Collectively, these findings reveal a novel role for granulocyte-derived IL-10 in suppressing S. aureus clearance during craniotomy infection, which is one mechanism to account for biofilm persistence.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据