4.7 Article

Exogenous monocyte myeloid-derived suppressor cells ameliorate immune imbalance, neuroinflammation and cognitive impairment in 5xFAD mice infected with Porphyromonas gingivalis

期刊

JOURNAL OF NEUROINFLAMMATION
卷 20, 期 1, 页码 -

出版社

BMC
DOI: 10.1186/s12974-023-02743-8

关键词

Porphyromonas gingivalis; Alzheimer's disease; mMDSCs; Cognitive impairment

向作者/读者索取更多资源

This study found that periodontitis is closely related to the development of Alzheimer's disease (AD). Porphyromonas gingivalis (Pg), a key pathogen in periodontal disease, was found to cause immune overreaction and induce cognitive impairment. The study also showed that monocytic myeloid-derived suppressor cells (mMDSCs) may play a role in immune balance in AD patients with periodontitis, and that exogenous mMDSCs can ameliorate immune overreaction and cognitive impairment caused by Pg infection.
BackgroundPeriodontitis is closely associated with the pathogenesis of Alzheimer's disease (AD). Porphyromonas gingivalis (Pg), the keystone periodontal pathogen, has been reported in our recent study to cause immune-overreaction and induce cognitive impairment. Monocytic myeloid-derived suppressor cells (mMDSCs) possess potent immunosuppressive function. It is unclear whether mMDSCs-mediated immune homeostasis is impaired in AD patients with periodontitis, and whether exogenous mMDSCs could ameliorate immune-overreaction and cognitive impairment induced by Pg.MethodsTo explore the influence of Pg on cognitive function, neuropathology and immune balance in vivo, 5xFAD mice were treated with live Pg by oral gavage, three times a week for 1 month. The cells of peripheral blood, spleen and bone marrow from 5xFAD mice were treated with Pg to detect the proportional and functional alterations of mMDSCs in vitro. Next, exogenous mMDSCs were sorted from wild-type healthy mice and intravenously injected into 5xFAD mice that were infected with Pg. We used behavioral tests, flow cytometry and immunofluorescent staining to evaluate whether exogenous mMDSCs could ameliorate the cognitive function, immune homeostasis and reduce neuropathology exacerbated by Pg infection.ResultsPg exacerbated cognitive impairment in 5xFAD mice, with the deposition of amyloid plaque and increased number of microglia in the hippocampus and cortex region. The proportion of mMDSCs decreased in Pg-treated mice. In addition, Pg reduced the proportion and the immunosuppressive function of mMDSCs in vitro. Supplement of exogenous mMDSCs improved the cognitive function, and enhanced the proportions of mMDSCs and IL-10(+) T cells of 5xFAD mice infected with Pg. At the same time, supplement of exogenous mMDSCs increased the immunosuppressive function of endogenous mMDSCs while decreased the proportions of IL-6(+) T cells and IFN-gamma(+) CD4(+) T cells. In addition, the deposition of amyloid plaque decreased while the number of neurons increased in the hippocampus and cortex region after the supplement of exogenous mMDSCs. Furthermore, the number of microglia increased with an increase in the proportion of M2 phenotype.ConclusionsPg can reduce the proportion of mMDSCs, induce immune-overreaction, and exacerbate the neuroinflammation and cognitive impairment in 5xFAD mice. Supplement of exogenous mMDSCs can reduce the neuroinflammation, immune imbalance and cognitive impairment in 5xFAD mice infected with Pg. These findings indicate the mechanism of AD pathogenesis and Pg-mediated promotion of AD, and provide a potential therapeutic strategy for AD patients.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据