4.6 Article

Characterization of prosthetic knees through a low-dimensional description of gait kinematics

出版社

BMC
DOI: 10.1186/s12984-023-01160-5

关键词

-

向作者/读者索取更多资源

The characterization of both limbs' behaviour in prosthetic gait is crucial for improving prosthetic components and increasing the biomechanical capability of trans-femoral amputees. This study proposes the planar covariation law of lower limb elevation angles as a compact description of prosthetic gait. The results show consistent patterns of the planar covariation law in prostheses users, indicating its significant biomechanical meaning and potential for guiding prosthetic device control mechanisms based on relevant kinematic quantities.
The characterization of both limbs' behaviour in prosthetic gait is of key importance for improving the prosthetic components and increasing the biomechanical capability of trans-femoral amputees. When characterizing human gait, modular motor control theories have been proven to be powerful in providing a compact description of the gait patterns. In this paper, the planar covariation law of lower limb elevation angles is proposed as a compact, modular description of prosthetic gait; this model is exploited for a comparison between trans-femoral amputees walking with different prosthetic knees and control subjects walking at different speeds. Results show how the planar covariation law is maintained in prostheses users, with a similar spatial organization and few temporal differences. Most of the differences among the different prosthetic knees are found in the kinematic coordination patterns of the sound side. Moreover, different geometrical parameters have been calculated over the common projected plane, and their correlation with classical gait spatiotemporal and stability parameters has been investigated. The results from this latter analysis have highlighted a correlation with several parameters of gait, suggesting that this compact description of kinematics unravels a significant biomechanical meaning. These results can be exploited to guide the control mechanisms of prosthetic devices based purely on the measurement of relevant kinematic quantities.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据