4.7 Article

Comparison of physicochemical and thermal properties of choline chloride and betaine-based deep eutectic solvents: The influence of hydrogen bond acceptor and hydrogen bond donor nature and their molar ratios

期刊

JOURNAL OF MOLECULAR LIQUIDS
卷 377, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.molliq.2023.121563

关键词

Deep eutectic solvents; Rheological properties; Optical properties; Thermal properties; Effect of molar ratio

向作者/读者索取更多资源

Within the field of green chemistry, deep eutectic solvents (DESs) are becoming increasingly important due to their unique physicochemical properties. In this study, a comparative analysis was conducted on six different DESs to investigate the effects of various parameters such as the nature of the hydrogen bond acceptor (HBA) and donor (HBD) and their molar ratio on properties including density, viscosity, refractive index, thermal stability, and thermal behavior. The results showed that DESs based on ethylene glycol (EG) exhibited the lowest density and viscosity, while those based on glycerol (Gly) had the highest values. Switching from choline chloride (ChCl) to betaine (Bet) as the HBA resulted in higher viscosity and density. Increasing the amount of HBD in the DESs led to lower viscosity, increased density for Gly-based DESs, and decreased density for EG and levulinic acid (LevA)-based DESs. The refractive index decreased with increasing HBD portion, but using ChCl instead of Bet as the HBA resulted in a higher refractive index. The thermal stability of the DESs was strongly influenced by the HBD used, with EG-based DESs being less stable than LevA-based ones and Gly-based DESs exhibiting the highest stability. Additionally, three characteristic mass loss events were observed in all DESs, attributed to the evaporation/degradation of the HBD, HBD-HBA interaction, and the HBA. Finally, differential scanning calorimetry (DSC) analyses showed that all DESs can be used as solvents due to their liquid state at room temperature and their ability to maintain liquid state over a wide temperature range.
Within the green chemistry area, deep eutectic solvents (DESs) are playing an increasingly prominent role thanks to their intriguing physicochemical properties. However, a comparative study encompassing a wide range of properties as a function of different parameters such as the nature of the hydrogen bond acceptor (HBA) and donor (HBD) and their molar ratio is still missing. In this work, six DESs based on the most used HBAs (choline chloride (ChCl) and betaine (Bet)) and HBDs (ethylene glycol (EG), glycerol (Gly) and levulinic acid (LevA)) combined in three different molar ratio (1:2, 1:3, 1:4) have been prepared and subjected to a series of analysis aimed at measuring different properties such as density, viscosity, refractive index, thermal stability and thermal behaviour. The most striking findings see the EG-based DESs dis-playing the lowest density and viscosity values, while the Gly-based DESs exhibited the highest. High viscosity and density have been obtained using Bet instead of ChCl as HBA. Increasing the amount of HBD in DESs caused lower viscosity in all cases, while density increased for all Gly-based DESs and decreased for EG and LevA-based DESs. The refractive index also decreased when the HBD portion was increased. However, higher refractive index was obtained using ChCl instead of Bet as HBA. The temperature and wavelength dependence of the refractive index is otherwise described pretty well by a Sellmeier model. The molar refractivity implied by density and refractive index data via the Clausius-Mossotti equation is consistent with that predicted by the empirical but well-established model of Wildman and Crippen. The short thermal stability of all investigated DESs is strictly related to the HBD used. EG-based DESs were less stable than LevA-based ones while Gly-based DESs were the most stable materials. Moreover, for all DESs three characteristic mass loss events have been identified. They can be attributed to the evap-oration/degradation of the HBD, of the intimately interacting HBD-HBA and of the HBA, respectively. Finally, DSC analyses showed that all DESs can be used as solvents given that they are liquids at room temperature, and they maintain a liquid state in a broad range of temperatures (T-g < -50 degrees C or no thermal events are observed). (C) 2023 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据