4.3 Article

Adaptive Selection in the Evolution of Aquaglyceroporins in Mammals

期刊

JOURNAL OF MOLECULAR EVOLUTION
卷 91, 期 4, 页码 441-457

出版社

SPRINGER
DOI: 10.1007/s00239-023-10112-5

关键词

Aquaglyceroporins; Mammals; Membrane intrinsic proteins; Molecular evolution; Positive selection

向作者/读者索取更多资源

AQPs are membrane proteins that transport water across cellular membranes, while AQGPs are a subfamily that transport small solutes. They play roles in various physiological processes in mammals. However, the conservation patterns, phylogenetic relationships, and evolution of AQPs in mammals remain unexplored.
Aquaporins (AQPs) are integral membrane proteins responsible for water transport across cellular membranes in both prokaryotes and eukaryotes. A subfamily of AQPs, known as aquaglyceroporins (AQGPs), facilitate the transport of small solutes such as glycerol, water, and other solutes across cellular membranes. These proteins are involved in a variety of physiological processes, such as organogenesis, wound healing, and hydration. Although AQPs have been studied extensively in different species, their conservation patterns, phylogenetic relationships, and evolution in mammals remain unexplored. In the present study, 119 AQGP coding sequences from 31 mammalian species were analysed to identify conserved residues, gene organisation, and most importantly, the nature of AQGP gene selection. Repertoire analysis revealed the absence of AQP7, 9, and 10 genes in certain species of Primates, Rodentia, and Diprotodontia, although not all three genes were absent in a single species. Two Asparagine-Proline-Alanine (NPA) motifs located at the N- and C-terminal ends, aspartic acid (D) residues, and the ar/R region were conserved in AQP3, 9, and 10. Six exons encoding the functional MIP domain of AQGP genes were found to be conserved across mammalian species. Evolutionary analysis indicated signatures of positive selection in AQP7, 9, and 10 amongst different mammalian lineages. Furthermore, substitutions of certain amino acids located close to critical residues may alter AQGP functionality, which is crucial for substrate selectivity, pore formation, and transport efficiency required for the maintenance of homeostasis in different mammalian species.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据