4.7 Article

Anisotropic Van Der Waals 2D GeAs Integrated on Silicon Four-Waveguide Crossing

期刊

JOURNAL OF LIGHTWAVE TECHNOLOGY
卷 41, 期 6, 页码 1784-1789

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/JLT.2022.3229069

关键词

Anisotropic van der waals materials; four-waveguide crossing; heterogeneous integration; optical density filters; silicon photonics

向作者/读者索取更多资源

In this study, the strong anisotropy of multilayer 2D GeAs was utilized to validate the technical feasibility of on-chip light management. The optical transmission spectra indicated a remarkable discrepancy between the in-plane crystal optical axes. The effect of GeAs crystal orientation on the electro-optic transmission performance was also demonstrated.
In-plane optical anisotropy plays a critical role in manipulating light in a wide range of planner photonic devices. In this study, the strong anisotropy of multilayer 2D GeAs is leveraged and utilized to validate the technical feasibility of on-chip light management. A 2D GeAs is stamped into an ultra-compact silicon waveguide four-way crossing optimized for operation in the O-optical band. The measured optical transmission spectra indicated a remarkable discrepancy between the in-plane crystal optical axes with an attenuation ratio of similar to 3.5 (at 1330 nm). Additionally, the effect of GeAs crystal orientation on the electro-optic transmission performance is demonstrated on a straight waveguide. A notable 50% reduction in responsivity was recorded for devices constructed with cross direction compared to devices with a crystal a-direction parallel to the light polarization. This extraordinary optical anisotropy, combined with a high refractive index similar to 4 of 2D GeAs, opens possibilities for efficient on-chip light manipulation in photonic devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据