4.5 Review

Prediction of effective thermal conductivity of nanofluids by modifying renovated Maxwell model

期刊

出版社

SAGE PUBLICATIONS LTD
DOI: 10.1177/0892705715598355

关键词

Effective thermal conductivity; nanolayer; fitting parameter Chi; size distribution of filler nanoparticle; effective volume fraction

向作者/读者索取更多资源

Nanofluids, which are formed by suspending nanoparticles into conventional fluids, exhibit anomalously high thermal conductivity. Renovated Maxwell model was developed by Choi in which the presence of very thin nanolayer surrounding the solid particles was considered, which can measurably increase the effective thermal conductivity of nanofluids. A new model is proposed by introducing a fitting parameter Chi in the renovated Maxwell model, which accounts for nanolayer, nonuniform sizes of filler nanoparticles together with aggregation. The model shows that the effective thermal conductivity of nanofluids is a function of the thickness of the nanolayer, the nanoparticle size, the nanoparticle volume fraction and the thermal conductivities of suspended nanoparticles, nanolayer and base fluid. The validation of the model is done by applying the results obtained by the experiments on nanofluids, other theoretical models, and artificial neural network technique. The uncertainty of the present measurements is estimated to be within 5% for the effective thermal conductivity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据