4.5 Article

Field applications of zein as a precise nanoscale delivery system for methoxyfenozide

期刊

JOURNAL OF INSECT SCIENCE
卷 23, 期 2, 页码 -

出版社

OXFORD UNIV PRESS INC
DOI: 10.1093/jisesa/iead017

关键词

soybean; insecticide residual; foliar application; biopolymer nanoparticle

向作者/读者索取更多资源

Biopolymeric nanoparticles have the potential to improve insecticide efficacy through improved absorption, coverage, and permeability, while protecting the active ingredient and extending efficacy. The experiments showed that positively charged zein nanoparticles loaded with methoxyfenozide had comparable efficacy to a commercial product.
When insecticides are applied in the environment, much of the product does not reach the target pest. Biopolymeric nanoparticles as nanocarriers have the potential to improve insecticide efficacy by improving absorption, coverage, and permeability while protecting the insecticide active ingredient from abiotic conditions and extending efficacy through controlled release. We conducted a series of experiments using a biopolymeric nanoparticle synthesized from zein, a biodegradable maize protein, to compare efficacy of a nanodelivered hydrophobic insect growth regulator (methoxyfenozide) against a commercial formulation. Positively charged zein nanoparticles (empty and loaded with methoxyfenozide) were compared to the formulated product, Intrepid 2F, as a foliar spray in-field on soybean. Chrysodeixis includens (Walker) was used as a model and was fed sprayed soybean leaves to evaluate efficacy of the tested foliar products over time. A separate set of leaves was sampled to measure residue levels of methoxyfenozide (MFZ) over time following foliar application using QuEChERS extraction and high-resolution liquid chromatography-mass spectrometry. Regression analysis found no differences in mortality slopes between positively charged zein nanoparticles loaded with methoxyfenozide [(+)ZNP(MFZ)] and Intrepid 2F, suggesting comparable efficacy of the synthesized nanoparticles to a commercial product. Higher concentrations of MFZ were present in (+)ZNP(MFZ)-treated in leaf tissue at 3 d following spray when compared to Intrepid 2F. The multiyear study results demonstrate that nanoparticles loaded with MFZ are comparable to Intrepid 2F under field conditions, with potential short-term benefits.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据