4.5 Article

The Effect of Different Stabilisers on Stability and Photothermal Profiling of Gold Nanorods

出版社

SPRINGER
DOI: 10.1007/s10904-023-02691-z

关键词

Gold nanorods; Surface modification; Polyvinylpyrrolidone; Polyethylene glycol thiol; Gelatin; Stability

向作者/读者索取更多资源

The application of gold nanorods (AuNRs) as a photothermal agent has become popular due to their optical, photothermal and biological properties. However, the use of a toxic surfactant in their synthesis limits their biological applications. This study evaluated the effect of different polymers or stabilizers on the stability and photothermal properties of AuNRs, and found that choosing polymers with fewer functional groups is crucial for coating nanoparticles for biological applications.
The photothermal application of gold nanorods (AuNRs) as a photothermal agent has gained popularity due to their optical, photothermal and biological properties. However, AuNRs are synthesised using a biotoxic surfactant (cetyl trimethyl ammonium bromide) which limits their biological applications. Though different techniques have been established to address this challenge using different stabilizers or passivating agents, the effect of these stabilizers on AuNRs' colloidal stability, thermal stability, and photothermal conversion efficiency still need to be investigated. In this study, we evaluated the effect of different polymers or stabilisers; two synthetic polymers [methoxy polyethylene glycol thiol (mPEG-SH) and polyvinylpyrrolidone (PVP)] and one biopolymer (gelatin) on the stability and photothermal properties of AuNRs. AuNRs absorbing around 800 nm were synthesised and coated with these three stabilisers. The colloidal stability of the as-synthesised material was evaluated in Dulbecco's phosphate-buffered saline (PBS) and Roswell Park Memorial Institute (RPMI-1640) using Ultraviolet-Visible-Near-Infrared (UV-Vis-NIR). The results show that PEG@AuNRs was more stable in both media due to fewer functional groups on its structure to bond with ions and protein. PVP@AuNRs showed good thermal stability under heat incubation (at 37, 50 and 70 degrees C) for 24 h because of its high thermal decomposition properties, while PEG@AuNRs proved superior in improving the AuNRs heat generation. In addition, coating with different polymers did not affect the photothermal ability of AuNRs. This study demonstrated that it is crucial to choose polymers with less functional groups when coating nanoparticles for biological application.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据