4.7 Article

Experimental study on the heat transfer and flow properties of γ-Al2O3/water nanofluid in a double-tube heat exchanger

期刊

JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY
卷 127, 期 3, 页码 2561-2575

出版社

SPRINGER
DOI: 10.1007/s10973-016-5868-x

关键词

Nanofluid; Convective heat transfer; Friction factor; Double-tube heat exchanger

向作者/读者索取更多资源

Double-tube heat exchanger is primarily adapted to high-temperature, high-pressure applications due to their relatively small diameters. An experimental study performed to investigate the effects of Al2O3/water nanofluid on the hydrodynamics and convective heat transfer of a counter flow double-tube heat exchanger. The nanofluid was used as hot fluid and passed through the inner tube of the heat exchanger considering fully developed turbulent flow regime. Experiments were conducted at the nanofluid flow rates of 7, 9, and 11 L min(-1), nanofluid inlet temperatures of 45, 55, and 65 A degrees C, and dilute nanoparticle concentrations of 0.05 and 0.15 vol%. Local convective heat transfer coefficient in double-tube heat exchanger has been measured experimentally for the first time. Results showed that nanofluids had higher Nusselt number than pure water. Also, the Nusselt number increased by increasing particles volume fraction, flow rate as well as temperature of nanofluid. However, increasing the convective heat transfer coefficient of the nanofluids was not sensible with increasing the concentration. In addition, the ratio of the heat transfer coefficient of nanofluid to that of the base fluid decreased by increasing Reynolds number. Adding gamma-Al2O3 nanoparticles to the base fluid increased the friction factor. In this study, the greatest enhancement in the heat transfer coefficient and the friction factor obtained at 0.15 vol% concentration of nanoparticles which were 23 and 25 %, respectively.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据