4.7 Article

Impact of different zero valent iron-based particles on anaerobic microbial dechlorination of 2,4-dichlorophenol: Comparison of dechlorination performance and the underlying mechanism

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 458, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jhazmat.2023.131881

关键词

Anaerobic; Microbial dechlorination; Iron-based particles; 2; 4-dichlorophenol; Ball-milled Fe0; FeS2

向作者/读者索取更多资源

This study compared the effects of different iron materials on the dechlorination of chlorophenols. Fe0/FeS2 and S-nZVI showed significantly higher dechlorination rates for 2,4-dichlorophenol compared to nZVI and nFe/Ni. Fe0/FeS2 consumed oxygen and facilitated electron transfer, leading to better dechlorination performance.
The integration of iron-based materials and anaerobic microbial consortia has been extensively studied owing to its potential to enhance pollutant degradation. However, few studies have compared how different iron materials enhance the dechlorination of chlorophenols in coupled microbial systems. This study systematically compared the combined performances of microbial community (MC) and iron materials (Fe0/FeS2 +MC, S-nZVI+MC, nZVI+MC, and nFe/Ni+MC) for the dechlorination of 2,4-dichlorophenol (DCP) as one representative of chlorophenols. DCP dechlorination rate was significantly higher in Fe0/FeS2 +MC and S-nZVI+MC (1.92 and 1.67 times, with no significant difference between two groups) than in nZVI+MC and nFe/Ni+MC (1.29 and 1.25 times, with no significant difference between two groups). Fe0/FeS2 had better performance for the reductive dechlorination process as compared with other three iron-based materials via the consumption of any trace amount of oxygen in anoxic condition and accelerated electron transfer. On the other hand, nFe/Ni could induce different dechlorinating bacteria as compared to other iron materials. The enhanced microbial dechlorination was mainly due to some putative dechlorinating bacteria (Pseudomonas, Azotobacter, Propionibacterium), and due to improved electron transfer of sulfidated iron particles. Therefore, Fe0/FeS2 as a biocompatible as well as lowcost sulfidated material can be a good alternative for possible engineering applications in groundwater remediation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据