4.7 Article

Multi-element isotopic analysis of hot particles from Chornobyl

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 452, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jhazmat.2023.131338

关键词

RIMS; Actinides; Fission products; Ultra-trace analysis

向作者/读者索取更多资源

Microscopic fuel fragments known as hot particles continue to contaminate the exclusion zone in Chernobyl. Isotopic analysis provides crucial information about their origin, history, and contamination of the environment. However, it has been underutilized due to the limitations of mass spectrometric techniques. Recent developments in resonance ionization mass spectrometry (RIMS) have expanded the range of elements that can be studied.
Microscopic fuel fragments, so-called hot particles, were released during the 1986 accident at the Chornobyl nuclear powerplant and continue to contaminate the exclusion zone in northern Ukraine. Isotopic analysis can provide vital information about sample origin, history and contamination of the environment, though it has been underutilized due to the destructive nature of most mass spectrometric techniques, and inability to remove isobaric interference. Recent developments have diversified the range of elements that can be investigated through resonance ionization mass spectrometry (RIMS), notably in the fission products. The purpose of this study is to demonstrate the application of multi-element analysis on hot particles as relates to their burnup, particle formation in the accident, and weathering. The particles were analysed with two RIMS instruments: resonant-laser secondary neutral mass spectrometry (rL-SNMS) at the Institute for Radiation Protection and Radioecology (IRS) in Hannover, Germany, and laser ionization of neutrals (LION) at Lawrence Livermore Na-tional Laboratory (LLNL) in Livermore, USA. Comparable results across instruments show a range of burnup dependent isotope ratios for U and Pu and Cs, characteristic of RBMK-type reactors. Results for Rb, Ba and Sr show the influence of the environment, retention of Cs in the particles and time passed since fuel discharge.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据