4.7 Article

Soil microbiome response to 2-chlorodibenzo-p-dioxin during bioremediation of contaminated tropical soil in a microcosm-based study

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 451, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jhazmat.2023.131105

关键词

Polychlorinated dibenzo-p-dioxins; dibenzofurans; Metagenomics; Contaminated soil; Bacillus sp; SS2; Bioremediation

向作者/读者索取更多资源

This study artificially contaminated a pristine soil with 2-chlorodibenzo-p-dioxin (2-CDD) and divided it into three portions. Microcosms SSOC and SSCC were seeded with Bacillus sp. SS2 and a three-member bacterial consortium respectively, showing significant degradation of 2-CDD. The microbial composition complexity in the contaminated soil decreased, with Firmicutes being the dominant phylum.
A pristine soil was artificially contaminated with 2-chlorodibenzo-p-dioxin (2-CDD) and separated into three portions. Microcosms SSOC and SSCC were seeded with Bacillus sp. SS2 and a three-member bacterial consortium respectively; SSC was untreated, while heat-sterilized contaminated soil served as overall control. Significant degradation of 2-CDD occurred in all microcosms except for the control where the concentration remained unchanged. Degradation of 2-CDD was highest in SSCC (94.9%) compared to SSOC (91.66%) and SCC (85.9%). There was also a notable reduction in the microbial composition complexity both in species richness and evenness following dioxin contamination, a trend that nearly lasted the study period; particularly in setups SSC and SSOC. Irrespective of the bioremediation strategies, the soil microflora was practically dominated by the Firmicutes and at the genus level, the phylotype Bacillus was the most dominant. Other dominant taxa though negatively impacted were Proteobacteria, Actinobacteria, Chloroflexi, and Acidobacteria. Overall, this study demonstrated the feasibility of microbial seeding as an effective strategy to cleanup tropical soil contaminated with dioxins and the importance of metagenomics in elucidating the microbial diversities of contaminated soils. Meanwhile, the seeded organisms, owed their success not only to metabolic competence, but survivability, adaptability and ability to compete favourably with autochthonous microflora.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据