4.7 Article

Ultrathin C3N4 nanosheets-based oxidase-like 2D fluorescence nanozyme for dual-mode detection of organophosphorus pesticides

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 451, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jhazmat.2023.131171

关键词

Organophosphorus pesticides; Oxidase-like 2D fluorescence nanozyme; Colorimetric-ratiometric fluorescence dual-mode assay; Onsite; Environmental health and food safety

向作者/读者索取更多资源

Developing an efficient and portable dual-mode sensor with built-in cross reference correction is crucial for reliable and accurate detection of organophosphorus pesticides (OPs) in field settings, especially in emergency situations where false-positive results need to be avoided.
Engineering efficient dual-mode portable sensor with built-in cross reference correction is of great significance for onsite reliable and precise detection of organophosphorus pesticides (OPs) and evading the false-positive outputs, especially in emergency case. Currently, most nanozyme-based sensors for OPs monitoring primarily replied on the peroxidase-like activity, which involved unstable and toxic H2O2. In this scenario, a hybrid oxidase-like 2D fluorescence nanozyme (PtPdNPs@g-C3N4) was yielded by in situ growing PtPdNPs in the ul-trathin two-dimensional (2D) graphitic carbon nitride (g-C3N4) nanosheet. When acetylcholinesterase (AChE) hydrolyzed acetylthiocholine (ATCh) to thiocholine (TCh), it ablated O-2(-) center dot from the dissolved O-2 catalyzed by PtPdNPs@g-C3N4's oxidase-like activity, hampering the oxidation of o-phenylenediamine (OPD) into 2,3-diami-nophenothiazine (DAP). Consequently, with the increasing concentration of OPs which inhibited the blocking effect by inactivating AChE, the produced DAP caused an apparent color change and a dual-color ratiometric fluorescence change in the response system. Through integrating into a smartphone, a H2O2-free 2D nanozyme-based onsite colorimetric and fluorescence dual-mode visual imaging sensor for OPs was proposed with acceptable results in real samples, which holds vast promise for further development of commercial point-of-care testing platform in early warning and controlling of OPs pollution for safeguarding environmental health and food safety.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据