4.7 Article

Non-radical degradation of organic pharmaceuticals by g-C3N4 under visible light irradiation: The overlooked role of excitonic energy transfer

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 445, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jhazmat.2022.130549

关键词

Non-radical; Excitons; Single electron transfer; Energy transfer

向作者/读者索取更多资源

An excitonic energy transfer (EET) based non-radical mechanism was proposed for the degradation of organic pharmaceuticals by g-C3N4 under visible light. The competition between single electron transfer (SET) and EET was studied, and the different mechanisms and degradation pathways were confirmed. The effect of humic acid (HA) on EET and SET was also explored, showing a distinct enhancement of EET and suppression of SET.
In this work, an excitonic energy transfer (EET) based non-radical mechanism was proposed for the degradation of organic pharmaceuticals by graphitic carbon nitride (g-C3N4) under visible light irradiation. Using diclofenac (DCF) as a model molecule, the competition between single electron transfer (SET) and EET was studied through modulating the exciton binding energy of g-C3N4. The different mechanisms of SET and EET for DCF degradation were predicted by DFT calculation, and further confirmed by their different degradation pathways. When EET played an important role, the rationality of some very popular radical scavengers, such as p-BQ, TEMPOL and furfuryl alcohol must be reconsidered. In addition, humic acid (HA) had a distinct effect on EET and SET. Specifically, HA enhanced the EET process through photosensitization, but suppressed SET through radical quenching effect. The effect of HA on DCF degradation depended on the contribution ratio of SET and ET.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据