4.7 Article

Insight into the relationships between total suspended particles and mercury in meltwater in a typical glacierized basin in the inland Tibetan Plateau

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 452, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jhazmat.2023.131250

关键词

Total suspended particle; Mercury; Transport; Glacierized basin; Tibetan Plateau

向作者/读者索取更多资源

Mercury (Hg) released by melting glaciers can bind to suspended particles in meltwater runoff, which can pose potential risks to downstream ecosystems. This study investigates the relationships between total suspended particles (TSP) and Hg in the context of glacier retreat. The results show that TSP concentration and number have an impact on the diurnal variation of Hg in meltwater runoff, and sites with high TSP concentrations tend to have higher Hg concentrations. The study also discusses the potential impact of TSP on Hg transport in different zones of the glacier recharge basin.
Mercury (Hg) released by melting glaciers is likely to bind to suspended particles in meltwater runoff, posing potential risks to downstream ecosystems. The rapidly receding glaciers on the Tibetan Plateau promote the export of total suspended particles (TSP), increasing the uncertainty of Hg export released by glacier melting. To investigate the relationships between TSP and Hg, a multimedia sampling campaign was conducted in July 2020 in the Kuoqionggangri glacier region of the Lhasa River Valley No. 1 glacierized basin located in the inland Tibetan Plateau. Samples from glacier snow/ice, supraglacial rivers, subglacial rivers, proglacial lakes, and meltwater runoff were obtained, and the relationships between TSP and Hg and their transport in glacier meltwater runoff in the context of glacier retreat were explored. The average TSP concentration of different environmental samples ranged from 9.51 mg/L to 399. 27 mg/L, showing significant differences. The average total Hg (THg) concentrations ranged from 0.52 ng/L to 58.81 ng/L and decreased in the order of snow/ice >runoff> subglacial river > proglacial lake > supraglacial river. Both TSP mass concentration and number concentration have an impact on the diurnal variation in meltwater runoff Hg, and the influence of TSP number concentration is stronger than that of concentration. Sites with high TSP concentrations and quantities tended to have higher Hg concentrations, while TSP particle size had no significant effect on Hg concentration or spatial distribution. Our study further divided the glacier recharge basin into the glacier cover zone, the periglacial zone, and the downstream zone and discussed the potential impact of TSP on Hg transport in each zone. Our analysis highlights that the periglacial zone will expand and activate the resuspension process of river sediments in the warming future, which may increase the export of TSP and Hg downstream.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据