4.7 Article

Oscillating viscous flow past a streamwise linear array of circular cylinders

期刊

JOURNAL OF FLUID MECHANICS
卷 959, 期 -, 页码 -

出版社

CAMBRIDGE UNIV PRESS
DOI: 10.1017/jfm.2023.178

关键词

general fluid mechanics

向作者/读者索取更多资源

This paper investigates the viscous flow generated by an array of equally spaced identical circular cylinders in an incompressible fluid stream. The study focuses on harmonically oscillating flows with stroke lengths that are comparable to or smaller than the cylinder radius, where the flow remains two-dimensional, time-periodic, and symmetric. The analysis considers the limit of asymptotically small stroke lengths and quantifies the recirculating vortices in the Lagrangian velocity field. The results suggest that the description of the Lagrangian mean flow remains accurate even when the stroke length is comparable to the cylinder radius.
This paper addresses the viscous flow developing about an array of equally spaced identical circular cylinders aligned with an incompressible fluid stream whose velocity oscillates periodically in time. The focus of the analysis is on harmonically oscillating flows with stroke lengths that are comparable to or smaller than the cylinder radius, such that the flow remains two-dimensional, time-periodic and symmetric with respect to the centreline. Specific consideration is given to the limit of asymptotically small stroke lengths, in which the flow is harmonic at leading order, with the first-order corrections exhibiting a steady-streaming component, which is computed here along with the accompanying Stokes drift. As in the familiar case of oscillating flow over a single cylinder, for small stroke lengths, the associated time-averaged Lagrangian velocity field, given by the sum of the steady-streaming and Stokes-drift components, displays recirculating vortices, which are quantified for different values of the two relevant controlling parameters, namely, the Womersley number and the ratio of the inter-cylinder distance to the cylinder radius. Comparisons with results of direct numerical simulations indicate that the description of the Lagrangian mean flow for infinitesimally small values of the stroke length remains reasonably accurate even when the stroke length is comparable to the cylinder radius. The numerical integrations are also used to quantify the streamwise flow rate induced by the presence of the cylinder array in cases where the periodic surrounding motion is driven by an anharmonic pressure gradient, a problem of interest in connection with the oscillating flow of cerebrospinal fluid around the nerve roots located along the spinal canal.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据