4.7 Article

Dynamics of mass polar spheroids during sedimentation

期刊

JOURNAL OF FLUID MECHANICS
卷 956, 期 -, 页码 -

出版社

CAMBRIDGE UNIV PRESS
DOI: 10.1017/jfm.2023.32

关键词

sediment transport; Stokesian dynamics; particle/fluid flows

向作者/读者索取更多资源

Experimental results confirm that polar prolate particles repel each other while oblate particles weakly attract. This effect is observed in both two-dimensional and three-dimensional experiments, and is dependent on the shape and mass asymmetry of the particles.
The dynamics of sedimenting particles under gravity are surprisingly complex due to the presence of effective long-ranged forces. When the particles are polar with a well-defined symmetry axis and non-uniform density, recent theoretical predictions suggest that prolate objects will repel and oblate ones will weakly attract. We tested these predictions using mass polar prolate spheroids, which are composed of 2 mm spheres glued together. We probed different aspect ratios (kappa) and centre of mass variations (chi) by combining spheres of different densities. Experiments were done in both quasi-two-dimensional (2-D) and three-dimensional (3-D) chambers. By optically tracking the motion of single particles, we found that the dynamics were well described by a reduced mobility matrix model that could be solved analytically. Pairs of particles exhibited an effective repulsion, and their separation roughly scaled as (K - 1)/chi(0.39), i.e. particles that were more prolate or had smaller mass asymmetry had stronger repulsion effects. In three dimensions, particles with chi > 0 were distributed more uniformly than chi = 0 particles, and the degree of uniformity increased with kappa, indicating that the effective 2-body repulsion manifests for a large number of particles.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据