4.7 Article

Applying lysozyme, alkaline protease, and sodium hypochlorite to reduce bioclogging during managed aquifer recharge: A laboratory study

期刊

JOURNAL OF ENVIRONMENTAL MANAGEMENT
卷 332, 期 -, 页码 -

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jenvman.2023.117371

关键词

Clogging; Bacteria; Extracellular polymeric substances (EPS); Enzyme; Chemical cleaning reagent

向作者/读者索取更多资源

Alleviating bacterial-induced clogging is crucial for improving the efficiency of managed aquifer recharge (MAR). Enzymes and sodium hypochlorite were tested for their effectiveness in reducing bioclogging through percolation experiments using laboratory-scale sand columns. The results showed that enzymes and sodium hypochlorite significantly reduced clogging rates, with sodium hypochlorite being the most effective. However, the use of sodium hypochlorite can generate harmful disinfection by-products. Therefore, enzyme treatment emerges as a promising option for bioclogging control.
Alleviating bacterial-induced clogging is of great importance to improve the efficiency of managed aquifer recharge (MAR). Enzymes (lysozyme and alkaline protease) and sodium hypochlorite (NaClO) are common biological and chemical reagents for inhibiting bacterial growth and activity. To investigate the applicability of these reagents to reduce bioclogging, percolation experiments were performed to simulate a weak alkaline recharge water infiltration through laboratory-scale sand columns, with adding 10 mg/L lysozyme, alkaline protease, and NaClO, respectively. The results showed that, with the addition of lysozyme, alkaline protease, and NaClO, the average clogging rates (the reduced percentages of relative saturated hydraulic conductivity of the sand columns per hour during the percolation experiments) were 0.53%/h, 0.32%/h and 0.06%/h, respectively, which were much lower than that in the control group (0.99%/h). This implied that bioclogging could be alleviated to some extent following the treatments. For further analyzing the mechanisms of the regents on alleviating bioclogging, the bacterial cell amount and extracellular polymeric substances (EPS) concentration were also measured to study the effects of lysozyme, alkaline protease, and NaClO on bacterial growth and EPS secretion. Lysozyme and alkaline protease could disintegrate bacterial EPS by hydrolyzing polysaccharides and proteins, respectively, while they had little effect on the bacterial cell amount. The addition of NaClO signifi-cantly decreased the bacterial cell amount (P < 0.05) and thus greatly alleviated bioclogging. Although the lowest average clogging rate was achieved in the NaClO group, it can generate disinfection by-products that are potentially harmful to the environment and human health. Therefore, the biological-based method, i.e., enzyme treatment, could be a promising option for bioclogging control. Our results provide insights for understanding the mechanisms of lysozyme, alkaline protease, and NaClO to alleviate bioclogging, which is of great importance for addressing the clogging problem during MAR activities and achieving groundwater resources sustainable utilization.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据