4.7 Article

Spatio-temporal dynamic diversity of bacterial alkaline phosphatase phoD gene and its environmental drivers in sediments during algal blooms: A case study of shallow Lake Taihu

期刊

JOURNAL OF ENVIRONMENTAL MANAGEMENT
卷 336, 期 -, 页码 -

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jenvman.2023.117595

关键词

Sediments; phoD gene; Alkaline phosphatase; Bacterial community; Environmental factors

向作者/读者索取更多资源

In this study, the abundance and community composition of the phoD gene were investigated in sediments from different regions of Lake Taihu during cyanobacterial blooms. The results showed spatial and temporal heterogeneity in phoD abundance, which was positively correlated with total organic carbon and total nitrogen. The phoD-harboring bacteria were mainly identified as belonging to Actinobacteria, with Kribbella, Streptomyces, and Lentzea as the predominant genera. The study provides important insights into the diversity and factors influencing the phoD gene in shallow lake sediments.
Bacterial alkaline phosphatase encoded by the phoD gene is essential for phosphorus (P) cycling in ecosystems. Until now, knowledge of the phoD gene diversity in shallow lake sediments is still lacking. In this study, from early to late stage of cyanobacterial blooms, we investigated the dynamic changes of the abundance of phoD gene (hereafter phoD abundance) and phoD-harboring bacterial community composition (hereafter phoD-harboring BCC) in sediments from different ecological regions of Lake Taihu, the third-largest shallow freshwater lake in China, as well as explored their environmental driving factors. Results showed that phoD abundance in the sediments of Lake Taihu showed spatiotemporal heterogeneity. The highest abundance was found in macrophyte-dominated area (mean 3.25*106copies/g DW), where Haliangium and Aeromicrobium were identified as the major contributors. Due to the negative impact of Microcystis species, phoD abundance decreased signif-icantly (by 40.28% on average) during cyanobacterial blooms in all other regions except the estuary area. The phoD abundance in sediment was positively correlated with total organic carbon (TOC) and total nitrogen (TN). However, the relationship between phoD abundance and alkaline phosphatase activity (APA) varied with time, showing positive correlation (R2 = 0.763, P < 0.01) in the early stage of cyanobacterial blooms, but not (R2 =-0.052, P = 0.838) in the later stage. The predominant phoD-harboring genera in sediments were Kribbella, Streptomyces and Lentzea, all of which belong to Actinobacteria. Non-metric multidimensional scaling (NMDS) analysis revealed that the spatial heterogeneity of phoD-harboring BCC in the sediments of Lake Taihu was significantly higher than the temporal heterogeneity. TP and sand were the principle environmental factors affecting the phoD-harboring BCC in the sediments of the estuary area, while DO, pH, organic phosphorus (Po) and diester phosphorus were the key driving factors for other lake regions. We concluded that the C, N, and P cycles in sediments might work in concert. This study extends the understanding of the phoD gene diversity in shallow lake sediments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据