4.3 Article

3D Thermal-Chemical Reactive Transport Modeling of Fluid-UO2 Reactions under Geological Repository Conditions

期刊

JOURNAL OF ENERGY ENGINEERING
卷 149, 期 2, 页码 -

出版社

ASCE-AMER SOC CIVIL ENGINEERS
DOI: 10.1061/JLEED9.EYENG-4614

关键词

Reactive transport modeling; Dissolution; Direct numerical simulations; Spent uranium dioxide (UO2) fuel management

向作者/读者索取更多资源

This study investigated the dissolution of uranium dioxide (UO2) under geological repository conditions using a three-dimensional thermal-chemical reactive transport model. The model considered the transport of chemical species, thermal conduction, and chemical dissolutions in UO2 fuel pellets. The study simulated UO2 dissolution at low and high temperatures, accounting for the changes in aqueous uranium species. The model can be used as a predictive tool for various applications.
In this study, we investigated uranium dioxide (UO2) dissolution under geological repository conditions by applying a three-dimensional (3D) thermal-chemical reactive transport model. The transport of chemical species and thermal conduction in UO2 fuel pellets and chemical dissolutions of UO2 were considered. The mathematical and numerical formulations of the model are described in the paper. Fluid-UO2 reactions were modeled to demonstrate the validity of modeling reaction processes. UO2 dissolution under low (25?) and high temperatures (250?) was simulated, taking into account the changes in aqueous uranium species with temperature. The predicted lifetime of one UO2 pellet is greatly dependent on the temperature. To illustrate the effect of uranium species on reaction rates, numerical studies were conducted at the same temperatures but with different reaction types and chemical species. It was found that reactions that produce UCl40 enhance the dissolution rates of UO2 by consuming the Cl- in solutions. UO2 dissolution with varying pH values was also modeled. When pH increased to 6, the average dissolution rate of a UO2 fuel pellet was eight times slower than it was at pH=2. Dissolution simulations were carried out on the images of fractured UO2 pellets. The impact of microfractures on UO2 dissolution was illustrated. The developed model is able to quantify UO2 dissolution behaviors and identify key parameters controlling the physiochemical processes involved. The model can be used as a predictive tool for applications such as spent UO2 fuel sequestration, contaminant transport, and geothermal resources development. (c) 2022 American Society of Civil Engineers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据