4.7 Article

Low-concentration CO2 capture system with liquid-like adsorbent based on monoethanolamine for low energy consumption

期刊

JOURNAL OF CLEANER PRODUCTION
卷 390, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.jclepro.2023.136141

关键词

CO2 capture; DAC; Energy consumption; Liquid -like adsorbent; Low CO2 concentration

向作者/读者索取更多资源

This study utilizes a liquidlike adsorbent (LLA) incorporated with monoethanolamine (MEA) to efficiently capture atmospheric CO2 in low-concentration environments. The addition of MEA improves the performance of LLA and reduces energy consumption in DAC systems.
Direct air capture (DAC) of atmospheric CO2 is becoming ever more important for a carbon neutral society. To achieve this, it is critical to reduce the energy consumption of DAC systems. In this work, as a solution, a liquidlike adsorbent (LLA) is used as an adsorbent for DAC of low-concentration CO2. We improve the performance of LLA with monoethanolamine (MEA), and named it as LLA-M to efficiently capture atmospheric CO2 and reduce energy consumption at DAC environment. The effective dispersion of MEA in the LLA promotes CO2 capture by overcoming their low thermal stability. When 40 wt% MEA is added, the highest performance is achieved along with a CO2 capture capacity of 2.50 mmol g(-1) in 100% CO2 atmosphere and 1.01 mmol g(-1) in low CO2 concentration atmosphere. The loss and deterioration of MEA is suppressed by the LLA and therefore the performance is stably maintained while repeating the CO2 capture/regeneration cycles. Consequently, the CO2 capture capacity is improved by 29.9% compared with when using only MEA. More importantly, the results indicate a record CO2 capture energy consumption of 0.89 GJ tCO2- 1 at 100% CO2 condition and 2.13 GJ tCO2- 1 at 400 ppm CO2 condition. Furthermore, the LLA-M can be recycled below 120 degrees C which makes it possible to reduce energy consumption by exploiting renewable energies such as solar heat. This study offers a promising low-carbon route for efficient atmospheric CO2 capture using an LLA incorporated with MEA.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据