4.7 Article

Sector-based volatile organic compound emission characteristics and reduction perspectives for coating materials manufacturing in China

期刊

JOURNAL OF CLEANER PRODUCTION
卷 394, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.jclepro.2023.136407

关键词

Volatile organic compounds; Coating materials manufacturing; Emission characteristics; Reduction potentials

向作者/读者索取更多资源

Coating materials manufacturing is a significant source of ambient volatile organic compounds (VOCs), and it is essential to develop effective control measures and understand their current emission characteristics and future projections. A comprehensive approach was used to determine emission factors (EFs) and sector-based VOC emission characteristics in China. Historical emissions trends were evaluated, and future reduction possibilities were projected.
Coating materials manufacturing, with heavy use of organic raw materials and excipients, has become an important industrial source of ambient volatile organic compounds (VOCs). Effective control measures must be developed which rely on a complete understanding of both the current emission characteristics and future emission projections. Thus, a comprehensive whole-process method was proposed and local investigations and measurements were conducted to acquire the material balance-based emission factors (EFs) and sector-based VOC emission characteristics in China. Then, its historical emission trends were evaluated and future reduc-tion perspectives were also projected. The results indicate that: (1) the non-controlled VOC EFs for different coatings were 80 g/kg solvent-based paint, 11 g/kg water-based paint, 49 g/kg varnish, 9 g/kg others (pigment, dyestuff, auxiliary), and 70 g/kg ink, respectively. (2) The VOC emissions increased from 0.34 Gg in 1949 to 872.72 Gg in 2018, and solvent-based paint was always the largest contributor (69-83%). Guangdong attributed the highest emissions (24.1%) in 2018, followed by Jiangsu (10.7%) and Sichuan (10.5%) provinces. The most abundant species were aromatics. (3) Disposal facility efficiency and VOC collection rate together determined the total process treatment efficiency. The disposal efficiency of adapted facilities could reach 90-99%, but the unmaintained or unsuitable facilities are more general and greatly reduced in efficiency. The collection rate could be up to >90% but only averaged about 40%. (4) Improving the treatment efficiency and expanding the market for green paint are the main pathways to reducing VOC emissions, and three scenarios were hereby set with increasing intensities. Compared to the non-controlled scenario, if basic or stringent control measures were fully implemented in China in 2030, the VOC emissions would be reduced by 70% or 81%, respectively.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据