4.7 Article

Spin-lattice relaxation time in water/graphene-oxide dispersion

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 158, 期 12, 页码 -

出版社

AIP Publishing
DOI: 10.1063/5.0134708

关键词

-

向作者/读者索取更多资源

We calculate the spin-lattice relaxation time of water in contact with graphene oxide using molecular dynamics simulations. The water-graphene oxide interaction is characterized by calculating the relaxation properties of bulk water and the contact angle, and comparing them with experimental data. The effect of graphene oxide on the dynamics and relaxation properties of water in different conditions and concentrations is investigated. Despite the diamagnetic nature of graphene oxide, the confined bilayers strongly affect the longitudinal relaxation properties of interfacial water due to hydrogen bonds with oxygen groups, making it a promising platform for studying water dynamics in confined geometries and a potential contrast-agent for MRI applications.
We present the results of the calculations of the spin-lattice relaxation time of water in contact with graphene oxide by means of all-atom molecular dynamics simulations. We fully characterized the water-graphene oxide interaction through the calculation of the relaxation properties of bulk water and of the contact angle as a function of graphene oxide oxidation state and comparing them with the available experimental data. We then extended the calculation to investigate how graphene oxide alters the dynamical and relaxation properties of water in different conditions and concentrations. We show that, despite the diamagnetic nature of the graphene oxide, the confining effects of the bilayers strongly affect the longitudinal relaxation properties of interfacial water, which presents a reduced dynamics due to hydrogen bonds with oxygen groups on graphene oxide. This property makes graphene oxide an interesting platform to investigate water dynamics in confined geometries and an alternative contrast-agent for magnetic resonance imaging applications, especially in view of the possibility to functionalize graphene oxide from theranostic perspectives.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据