4.7 Article

Active Brownian particles in random and porous environments

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 158, 期 10, 页码 -

出版社

AIP Publishing
DOI: 10.1063/5.0131340

关键词

-

向作者/读者索取更多资源

In this study, the structural and dynamical properties of active Brownian particles (ABPs) in random environments are explored. It is found that confinement increases the heterogeneity of the dynamics, resulting in the appearance of new populations of absorbed and localized particles near the obstacles. This heterogeneity has a profound impact on the motility induced phase separation exhibited by the particles at high activity, ranging from nucleation and growth in random disorder to a complex phase separation in porous environments.
The transport of active particles may occur in complex environments, in which it emerges from the interplay between the mobility of the active components and the quenched disorder of the environment. Here, we explore the structural and dynamical properties of active Brownian particles (ABPs) in random environments composed of fixed obstacles in three dimensions. We consider different arrangements of the obstacles. In particular, we consider two particular situations corresponding to experimentally realizable settings. First, we model pinning particles in (non-overlapping) random positions and, second, in a percolating gel structure and provide an extensive characterization of the structure and dynamics of ABPs in these complex environments. We find that the confinement increases the heterogeneity of the dynamics, with new populations of absorbed and localized particles appearing close to the obstacles. This heterogeneity has a profound impact on the motility induced phase separation exhibited by the particles at high activity, ranging from nucleation and growth in random disorder to a complex phase separation in porous environments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据