4.7 Article

Characterization of endogenous Kv1.3 channel isoforms in T cells

期刊

JOURNAL OF CELLULAR PHYSIOLOGY
卷 -, 期 -, 页码 -

出版社

WILEY
DOI: 10.1002/jcp.30984

关键词

calcium signaling; electrophysiology; immunological synapse; Kv1; 3 channels; T cells

向作者/读者索取更多资源

Voltage-dependent potassium channel Kv1.3 plays a crucial role in T-cell activation, but reliable detection under endogenous circumstances is hindered by the lack of reliable antibodies. To overcome this limitation, a Jurkat T-cell line with endogenous Kv1.3 channel tagged was created to study its expression, location, and changes during activation. The study revealed the presence of three isoforms of Kv1.3, including a previously undescribed truncated isoform, which showed different functional roles in T cells.
Voltage-dependent potassium channel Kv1.3 plays a key role on T-cell activation; however, lack of reliable antibodies has prevented its accurate detection under endogenous circumstances. To overcome this limitation, we created a Jurkat T-cell line with endogenous Kv1.3 channel tagged, to determine the expression, location, and changes upon activation of the native Kv1.3 channels. CRISPR-Cas9 technique was used to insert a Flag-Myc peptide at the C terminus of the KCNA3 gene. Basal or activated channel expression was studied using western blot analysis and imaging techniques. We identified two isoforms of Kv1.3 other than the canonical channel (54 KDa) differing on their N terminus: a longer isoform (70 KDa) and a truncated isoform (43 KDa). All three isoforms were upregulated after T-cell activation. We focused on the functional characterization of the truncated isoform (short form, SF), because it has not been previously described and could be present in the available Kv1.3-/- mice models. Overexpression of SF in HEK cells elicited small amplitude Kv1.3-like currents, which, contrary to canonical Kv1.3, did not induce HEK proliferation. To explore the role of endogenous SF isoform in a native system, we generated both a knockout Jurkat clone and a clone expressing only the SF isoform. Although the canonical isoform (long form) localizes mainly at the plasma membrane, SF remains intracellular, accumulating perinuclearly. Accordingly, SF Jurkat cells did not show Kv1.3 currents and exhibited depolarized resting membrane potential (V-M), decreased Ca2+ influx, and a reduction in the [Ca2+](i) increase upon stimulation. Functional characterization of these Kv1.3 channel isoforms showed their differential contribution to signaling pathways involved in formation of the immunological synapse. We conclude that alternative translation initiation generates at least three endogenous Kv1.3 channel isoforms in T cells that exhibit different functional roles. For some of these functions, Kv1.3 proteins do not need to form functional plasma membrane channels.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据