4.7 Article

Accumulated precursors of specific GPI-anchored proteins upregulate GPI biosynthesis with ARV1

期刊

JOURNAL OF CELL BIOLOGY
卷 222, 期 5, 页码 -

出版社

ROCKEFELLER UNIV PRESS
DOI: 10.1083/jcb.202208159

关键词

-

向作者/读者索取更多资源

Liu et al. demonstrate that precursors of specific GPI-anchored proteins, in collaboration with ER-resident ARV1, contribute to the upregulation of GPI biosynthesis. This study provides insights into the mechanism by which GPI biosynthesis is regulated.
Liu et al. show that precursors of specific GPI-anchored proteins, such as CD55, function with an ER-resident lipid homeostasis regulator ARV1 to upregulate GPI biosynthesis in the ER. This may be an important mechanism to increase GPI when needed. We previously reported that glycosylphosphatidylinositol (GPI) biosynthesis is upregulated when endoplasmic reticulum-associated degradation (ERAD) is defective; however, the underlying mechanistic basis remains unclear. Based on a genome-wide CRISPR-Cas9 screen, we show that a widely expressed GPI-anchored protein CD55 precursor and ER-resident ARV1 are involved in upregulation of GPI biosynthesis under ERAD-deficient conditions. In cells defective in GPI transamidase, GPI-anchored protein precursors fail to obtain GPI, with the remaining uncleaved GPI-attachment signal at the C-termini. We show that ERAD deficiency causes accumulation of the CD55 precursor, which in turn upregulates GPI biosynthesis, where the GPI-attachment signal peptide is the active element. Among the 31 GPI-anchored proteins tested, only the GPI-attachment signal peptides of CD55, CD48, and PLET1 enhance GPI biosynthesis. ARV1 is prerequisite for the GPI upregulation by CD55 precursor. Our data indicate that GPI biosynthesis is balanced to need by ARV1 and precursors of specific GPI-anchored proteins.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据