4.7 Article

Clinical side-effects based drug repositioning for anti-epileptic activity

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/07391102.2023.2199874

关键词

Epilepsy; drug repositioning; side-effect-based drug repositioning; molecular modelling; molecular docking study; molecular dynamic simulation

向作者/读者索取更多资源

This study used a drug repositioning strategy to identify potential anti-epileptic drugs by evaluating the clinical side effect similarities of drugs in a database. Paroxetine showed better binding affinities to target receptors and has potential as a candidate for epilepsy treatment.
Several generations of anti-epileptic drugs (AEDs) are available but have several associated side effects apart from a limited success rate. Drug repositioning strategies have gained importance in the last two decades owing to lower failure rates and economic burden. Drugs with similar side effect profiles may share a common mechanism of action and thus can be linked to other disease treatments. The present study was carried out to identify the newly approved drug candidate(s) as AEDs using clinical side-effects drug repositioning strategy. The clinical side effect similarity of drugs available in the SIDER v4.1 database was estimated against common side effects of 5 major marketed AEDs, using the 'dplyr' package library in the R. Further drugs were filtered based on Blood Brain Barrier permeability prediction and FDA-approval status. Molecular docking studies were performed for selected 26 hits (drugs) against previously identified epilepsy target receptors: Voltage-gated sodium channel alpha 2 (Nav1.2), GABA receptor alpha 1-beta 1 (GABAr alpha 1-beta 1), and Voltage-gated calcium channel alpha-1 G (Cav3.1). Only 2 drugs (Ziprasidone and Paroxetine) showed better binding affinities against studied epilepsy receptors Nav1.2, GABAr alpha 1-beta 1, and Cav3.1, than their corresponding standard AEDs, i.e. Carbamazepine, Clonazepam, and Pregabalin, respectively. Ziprasidone reportedly showed seizure-like symptoms in similar to 3% of patients and was hence omitted from further study. The MDS study of docked complexes of Paroxetine with selected epilepsy target receptors showed stable RMSD values and better interaction energies. The study reveals Paroxetine as a potential candidate to be repurposed for 1st line epileptic seizure medication.Communicated by Ramaswamy H. Sarma

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据