4.7 Article

Insight into crystal structures and identification of potential styrylthieno[2,3-b]pyridine-2-carboxamidederivatives against COVID-19 Mpro through structure-guided modeling and simulation approach

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/07391102.2023.2220799

关键词

Styrylthieno[2; 3-b]pyridine-2-carboxamide; QTAIM; NLO; AIM analysis; molecular docking; ADMET; molecular dynamics

向作者/读者索取更多资源

Anti-SARS-CoV-2 drugs, including protease inhibitors, are being studied for their potential in preventing the pandemic and providing immunization. This study focused on the Mpro structure, which plays a crucial role in viral expression and replication, as well as the activation of cytokines. Thienopyridine derivatives were found to increase the release of nitric oxide, which has antibacterial activity against various pathogens. Molecular docking and MD simulation analysis revealed that compounds 1 and 2 exhibited strong binding interactions with the SARS-COV-2 3CL Mpro protein.
Anti-SARS-CoV-2 drugs are urgently needed to prevent the pandemic and for immunization. Their protease inhibitor treatment for COVID-19 has been used in clinical trials. In Calu-3 and THP1 cells, 3CL SARS-CoV-2 Mpro protease is required for viral expression, replication, and the activation of the cytokines IL-1, IL-6, and TNF-. The Mpro structure was chosen for this investigation because of its activity as a chymotrypsin-like enzyme and the presence of a cysteine-containing catalytic domain. Thienopyridine derivatives increase the release of nitric oxide from coronary endothelial cells, which is an important cell signaling molecule with antibacterial activity against bacteria, protozoa, and some viruses. Using DFT calculations, global descriptors are computed from HOMO-LUMO orbitals; the molecular reactivity sites are analyzed from an electrostatic potential map. NLO properties are calculated, and topological analysis is also part of the QTAIM studies. Both compounds 1 and 2 were designed from the precursor molecule pyrimidine and exhibited binding energies (-14.6708 kcal/mol and -16.4521 kcal/mol). The binding mechanisms of molecule 1 towards SARS-COV-2 3CL Mpro exhibited strong hydrogen bonding as well as Vdw interaction. In contrast, derivative 2 was bound to the active site protein's active studied that several residues and positions, including (His41, Cys44, Asp48, Met49, Pro52, Tyr54, Phe140, Leu141, Ser144, His163, Ser144, Cys145, His164, Met165, Glu166, Leu167, Asp187, Gln189, Thr190, and GLn192) are critical for the maintenance of inhibitors inside the active pocket. Molecular docking and 100 ns MD simulation analysis revealed that Both compounds 1 and 2 with higher binding affinity and stability toward the SARS-COV-2 3CL Mpro protein. Binding free energy calculations and other MD parameters support the finding.Communicated by Ramaswamy H. Sarma

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据