4.6 Article

A study of grain boundary effects on the stress-induced martensitic transformation and superelasticity in NiTi alloy via atomistic simulation

期刊

JOURNAL OF APPLIED PHYSICS
卷 133, 期 8, 页码 -

出版社

AIP Publishing
DOI: 10.1063/5.0134274

关键词

-

向作者/读者索取更多资源

The stress-induced martensitic transformations and superelasticity behavior in the NiTi alloy are studied using molecular dynamics simulations. A proposed atomic tracing method is used to identify specific numbers of martensite variants. It is found that the twist grain boundary induces an increase in the martensite start temperature and brings about the acceleration of martensite nucleation and an earlier occurrence of stress plateau.
The stress-induced martensitic transformations and superelasticity behavior in the NiTi alloy with a single crystal model and a twist grain boundary bicrystal model at different temperatures are studied using molecular dynamics simulations. An atomic tracing method is proposed to identify specific numbers of B19' martensite variants. Under uniaxial compressive loading, the stress-induced martensitic transformation takes place accompanied by the formation of < 011 >(M) type II twins, and the deformation process can be divided into three distinct stages based on microstructure evolution and average atomic total energy. It is found that the twist grain boundary induces an increase in the martensite start temperature, which is consistent with the experimental results. There is no residual B19 & PRIME; martensite at the end of the unloading process, and the irrecoverable strain mainly results from plastic deformation at the grain boundary through the analysis of atomic local shear strains and has hardly changed with increasing deformation temperature. Remarkably, the grain boundary brings about the acceleration of martensite nucleation and an earlier occurrence of stress plateau. Further simulation results manifest that the presence of the twist grain boundary leads to weakened temperature dependence of martensitic transformation stress and a reduction in the hysteresis loop area.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据