4.6 Article

Let sleeping logs lie: Beta diversity increases in deadwood beetle communities over time

期刊

JOURNAL OF ANIMAL ECOLOGY
卷 92, 期 5, 页码 948-952

出版社

WILEY
DOI: 10.1111/1365-2656.13908

关键词

beta diversity; brown food web; coleoptera; dead wood; deterministic; saproxylic; stochastic; succession; turnover

向作者/读者索取更多资源

This study examines the patterns and drivers of succession in wood-decomposing beetle communities. The results show that both deterministic and stochastic processes influence deadwood succession, and increasing phylogenetic distance among tree species leads to greater differences in deadwood beetle communities. The study also found that space, forest structure, and climate have different effects on deadwood beetle communities. Maintaining a diversity of deadwood decay stages and structurally diverse forests can promote deadwood beetle biodiversity.
Research Highlight: Seibold, S., Weisser, W., Ambarli, D., Gossner, M. M., Mori, A., Cadotte, M., Hagge, J., Bassler, C. & Thorn, S. (2022). Drivers of community assembly change during succession in wood-decomposing beetle communities. Journal of Animal Ecology, https://doi.org/10.1111/1365-2656.13843. Paradigms of succession and its drivers have largely developed from systems relying on living plants. A substantial portion of terrestrial biodiversity and biomass exists in detrital systems that rely on dead organic matter, yet successional patterns in detrital systems have received far less attention. In particular, deadwood significantly contributes to forest ecosystem nutrient cycling and storage and represents a relatively long- lived detrital system in which to study patterns of succession. Seibold et al. examined successional patterns of deadwood beetle communities over 8 year s in a large- scale experiment that included 379 logs from 13 different tree species in 30 forest stands in three regions of Germany. They predicted that deadwood beetle communities would initially differ among deadwood tree species, across space, and with climatic differences but would become more similar over time as deadwood decomposed and characteristics of remaining habitat become more homogeneous. However, Seibold et al. predicted that beetle communities would become increasingly different across space along dead- wood succession if late successional species were weaker dispersers than early successional species. Surprisingly, beetle communities became more dissimilar over time contrary to predictions. But, as predicted, increasing phylogenetic distance among tree species led to increasingly dissimilar deadwood beetle communities. Lastly, differences across space, forest structure and climate led to different deadwood beetle communities, but these effects remained constant over time. These results suggest that deadwood succession is influenced by both deterministic and stochastic pro- cesses and that stochastic processes may be increasingly important in late succes- sional stages. Seibold et al. reveal important drivers of detrital successional patterns in deadwood that indicate that deadwood beetle biodiversity can be promoted via main- taining a diversity of deadwood decay stages across a large phylogenetic diversity of trees species and structurally diverse forests. Future studies that test the mechanisms driving these patterns and whether these results hold for other saproxylic organisms will help inform forest conservation and management strategies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据