4.7 Article

Enhanced charge carrier density of a p-n BiOCl/BiVO4 heterostructure by Ni doping for photoelectrochemical applications

期刊

JOURNAL OF ALLOYS AND COMPOUNDS
卷 937, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jallcom.2022.168434

关键词

Bismuth vanadate; Bismuth oxychloride; Photoelectrochemical cell; Water splitting; Hydrogen; Density functional theory

向作者/读者索取更多资源

Pure and doped p-n BiOCl/BiVO4 heterostructures with different levels of Ni were investigated for their application as photoanodes in photoelectrochemical cells. Various characterization techniques were used to study the properties of the materials, and density function theory calculations were employed to understand the physical mechanism of Ni substitution. The Ni-doped p-n BiOCl/BiVO4 heterostructure showed improved photocatalytic activity due to the additional surface state and increased charge carrier density.
Pure and doped p-n BiOCl/BiVO4 heterostructures with various Ni contents were studied for photoanode applications in photoelectrochemical cells. All materials were synthesized by the coprecipitation method. The properties of the pure and doped materials were characterized by various techniques, such as X-ray diffraction, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, UVevisible spectroscopy, and electrochemical impedance spectroscopy. Furthermore, density function theory calculations were employed to investigate the underlying physical mechanism of the Ni substitution. The materials were applied as the photoanode at an applied bias voltage of +1.9 V (vs. RHE) and irradiated over 4200 s under the solar light simulator. The pure p-n BiOCl/BiVO4 heterostructure showed the highest photocurrent of 1 mA/cm2. After 1% Ni doping, the photocurrent density was enhanced, and the highest photocurrent density was approximately 1.7 mA/cm2. From the theoretical calculation aspect, the role of Ni substitution into the parent p-n BiVO4 and BiOCl materials resulted in a surface state under the conduction band of both parent materials. The result was in agreement with the Mott-Schottky analysis, which showed that the charge carrier density increased as Ni atoms were added to the p-n BiOCl/BiVO4 heterostructure. Therefore, the additional state and the increase in the charge carrier density led to the improved photocatalytic activity of the Ni-doped p-n BiOCl/BiVO4 heterostructure. (c) 2022 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据