4.7 Article

Mechanical properties and microstructure evolution of 2219 aluminum alloy via electromagnetic ring expansion & electromagnetic treatment

期刊

JOURNAL OF ALLOYS AND COMPOUNDS
卷 947, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jallcom.2023.169615

关键词

2219 aluminum alloy; Electromagnetic ring expansion; Electromagnetic treatment; Phase transformation; Microstructure characterization

向作者/读者索取更多资源

As an emerging technology, electromagnetic forming has a complex effect on the mechanical properties and microstructure evolution of materials. This study investigates the relationship between microstructure evolution and mechanical properties of AA2219-T6 under different discharge energies during electromagnetic ring expansion (EMRE) experiments. The results show that the use of a steel sleeve leads to similar microhardness as AA2219-T6, while the use of an epoxy resin sleeve or EMRE alone results in lower microhardness.
As an emerging technology to solve the bottleneck of plastic processing of light alloys, electromagnetic forming usually causes a complex mechanical response and microstructure evolution of materials. In this work, based on the electromagnetic ring expansion (EMRE) experiment, the relationship between micro-structure evolution and mechanical properties of AA2219-T6 under EMRE with different discharge energies is established. In particular, to reveal the influence of strain and temperature parameters on the output response during the electromagnetic pulse process, a Q235 steel sleeve and an epoxy resin sleeve with different thermal conductivities are applied to constrain the deformation of the ring, respectively, thus the performance under electromagnetic treatment (EMT) are investigated. It is found that, under the threshold discharge energy of 4.23 kJ, the microhardness of the ring via EMT with the steel sleeve is similar to that of AA2219-T6, but increases by 20.9% compared with the ring via EMT with the epoxy sleeve and 17.1% compared with the ring via EMRE. The electromagnetic pulse has no significant effect on the evolution of precipitates in AA2219-T6-EMT (Steel), but the adiabatic temperature rise in AA2219-T6-EMT (Epoxy) caused redissolution of G.P.II zones. With the gradual increase of discharge energy under EMRE, the mi-crohardness of AA2219-T6 increases initially and followed by a decrease, while the fracture strain increases continuously. When discharge energy reaches 8.63 kJ, 2219 aluminum alloy has the optimal mechanical properties that, compared with AA2219-T6, the microhardness increased by 14.2% and the fracture strain increased by 18.0%. The dislocation density shows a trend of first increasing and then decreasing with the increase of discharge energy. Combined with the observed phase transformation, it is shown that dis-locations generated by EMRE will promote G.P.II zones to transform into theta'' phases, and affected by dis-location density, the transformation effect is most obvious at 8.63 kJ. In addition, the transformation of precipitates greatly increases the probability of hindering the motion of dislocations, which promotes the precipitates to be dispersed, and AA2219-T6 is further strengthened after EMRE. As discharge energy continues to increase, the dislocations begin to annihilate and G.P.II zones are redissolved due to the adiabatic temperature rise. (c) 2023 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据