4.8 Article

Metagenome-derived virus-microbe ratios across ecosystems

期刊

ISME JOURNAL
卷 -, 期 -, 页码 -

出版社

SPRINGERNATURE
DOI: 10.1038/s41396-023-01431-y

关键词

-

向作者/读者索取更多资源

A metagenome-based method was used to estimate the virus-to-microbe ratio, and it was found that viruses may be much less abundant than previously thought, especially in non-aquatic environments.
It is generally assumed that viruses outnumber cells on Earth by at least tenfold. Virus-to-microbe ratios (VMR) are largely based on counts of fluorescently labelled virus-like particles. However, these exclude intracellular viruses and potentially include false positives (DNA-containing vesicles, gene-transfer agents, unspecifically stained inert particles). Here, we develop a metagenome-based VMR estimate (mVRM) that accounts for DNA viruses across all stages of their replication cycles (virion, intracellular lytic and lysogenic) by using normalised RPKM (reads per kilobase of gene sequence per million of mapped metagenome reads) counts of the major capsid protein (MCP) genes and cellular universal single-copy genes (USCGs) as proxies for virus and cell counts, respectively. After benchmarking this strategy using mock metagenomes with increasing VMR, we inferred mVMR across different biomes. To properly estimate mVMR in aquatic ecosystems, we generated metagenomes from co-occurring cellular and viral fractions (>50 kDa-200 mu m size-range) in freshwater, seawater and solar saltern ponds (10 metagenomes, 2 control metaviromes). Viruses outnumbered cells in freshwater by similar to 13 fold and in plankton from marine and saline waters by similar to 2-4 fold. However, across an additional set of 121 diverse non-aquatic metagenomes including microbial mats, microbialites, soils, freshwater and marine sediments and metazoan-associated microbiomes, viruses, on average, outnumbered cells by barely two-fold. Although viruses likely are the most diverse biological entities on Earth, their global numbers might be closer to those of cells than previously estimated.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据