4.7 Article

The Muscle-Conditioned Medium Containing Protocatechuic Acid Improves Insulin Resistance by Modulating Muscle Communication with Liver and Adipose Tissue

期刊

出版社

MDPI
DOI: 10.3390/ijms24119490

关键词

diabetes mellitus; protocatechuic acid; insulin resistance; glucose uptake

向作者/读者索取更多资源

This study investigated the role of PCA in improving insulin resistance and the crosstalk between muscle with liver and adipose tissue. The results showed that PCA significantly enhanced glucose uptake in C2C12, HepG2, and 3T3-L1 adipocytes. Furthermore, PCA strengthens insulin signaling by activating key proteins of that pathway and regulating glucose uptake.
Diabetes mellitus is a public health concern, affecting 10.5% of the population. Protocatechuic acid (PCA), a polyphenol, exerts beneficial effects on insulin resistance and diabetes. This study investigated the role of PCA in improving insulin resistance and the crosstalk between muscle with liver and adipose tissue. C2C12 myotubes received four treatments: Control, PCA, insulin resistance (IR), and IR-PCA. Conditioned media from C2C12 was used to incubate HepG2 and 3T3-L1 adipocytes. The impact of PCA was analyzed on glucose uptake and signaling pathways. PCA (80 mu M) significantly enhanced glucose uptake in C2C12, HepG2, and 3T3-L1 adipocytes (p < 0.05). In C2C12, PCA significantly elevated GLUT-4, IRS-1, IRS-2, PPAR-gamma, P-AMPK, and P-Akt vs. Control (p <= 0.05), and modulated pathways in IR-PCA. In HepG2, PPAR-gamma and P-Akt increased significantly in Control (CM) vs. No CM, and PCA dose upregulated PPAR-gamma, P-AMPK, and P-AKT (p < 0.05). In the 3T3-L1 adipocytes, PI3K and GLUT-4 expression was elevated in PCA (CM) vs. No CM. A significant elevation of IRS-1, GLUT-4, and P-AMPK was observed in IR-PCA vs. IR (p <= 0.001). Herein, PCA strengthens insulin signaling by activating key proteins of that pathway and regulating glucose uptake. Further, conditioned media modulated crosstalk between muscle with liver and adipose tissue, thus regulating glucose metabolism.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据