4.7 Article

The Direct Anti-Virulence but Not Bactericidal Activity of Human Neutrophil Elastase against Moraxella catarrhalis

期刊

出版社

MDPI
DOI: 10.3390/ijms24076607

关键词

neutrophil elastase; Moraxella catarrhalis; outer membrane vesicles (OMVs); outer membrane proteins (OMPs); complement; anti-virulence action; bactericidal action; inflammation; TEM; OMP CD; COPD

向作者/读者索取更多资源

Neutrophil elastase (NE) plays a role in innate antibacterial defense. This study found that M. catarrhalis can survive and replicate in the presence of NE, despite NE destabilizing the outer membrane. NE cleaves virulent surface proteins in outer membrane vesicles of M. catarrhalis. The cleavage of OMP CD decreases resistance to serum complement, while the cleavage of McaP has no effect on erythromycin sensitivity.
Neutrophil elastase (NE) contributes to innate antibacterial defense at both the intracellular (phagocytosis) and extracellular (degranulation, NETosis) levels. Moraxella catarrhalis, a human respiratory pathogen, can exist in an inflammatory milieu which contains NE. No data are available on the action of NE against M. catarrhalis or on the counteraction of NE-dependent host defenses by this pathogen. Using time-kill assays we found that bacteria are able to survive and replicate in the presence of NE. Transmission electron microscopy and flow cytometry studies with NE-treated bacteria revealed that while NE admittedly destabilizes the outer membrane leaflet, it does not cause cytoplasmic membrane rupture, suggesting that the enzyme does not target components that are essential for cell integrity. Using LC-MS/MS spectroscopy we determined that NE cleaved at least three virulent surface proteins in outer membrane vesicles (OMVs) of M. catarrhalis, including OMP CD, McaP, and TbpA. The cleavage of OMP CD contributes to the significant decrease in resistance to serum complement in the complement-resistant strain Mc6. The cleavage of McaP did not cause any sensitization to erythromycin nor did NE disturb its drug action. Identifying NE as a novel but subtle anti-virulence agent together with its extracellularly not-efficient bactericidal activity against M. catarrhalis may facilitate the pathogen's existence in the airways under inflammation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据