4.7 Article

Delivery of Doxorubicin by Ferric Ion-Modified Mesoporous Polydopamine Nanoparticles and Anticancer Activity against HCT-116 Cells In Vitro

期刊

出版社

MDPI
DOI: 10.3390/ijms24076854

关键词

mesoporous polydopamine; ferric ions; doxorubicin (DOX); hyaluronic acid target modification

向作者/读者索取更多资源

In this study, a simple and effective method for developing a nanotherapeutic agent for chemotherapy combined with photothermal therapy was presented. The agent consisted of mesoporous polydopamine modified by ferric ions and loaded with the anticancer drug doxorubicin, as well as an outer layer coating of hyaluronic acid. The findings showed that the nanotherapeutic agent had enhanced heat generation effect and demonstrated potent cytotoxicity to tumor cells under near-infrared light illumination. This system deserves further investigation as a potential nanotherapeutic platform for photothermal treatment of cancer.
In clinical cancer research, photothermal therapy is one of the most effective ways to increase sensitivity to chemotherapy. Here, we present a simple and effective method for developing a nanotherapeutic agent for chemotherapy combined with photothermal therapy. The nanotherapeutic agent mesoporous polydopamine-Fe(III)-doxorubicin-hyaluronic acid (MPDA-Fe(III)-DOX-HA) was composed of mesoporous polydopamine modified by ferric ions and loaded with the anticancer drug doxorubicin (DOX), as well as an outer layer coating of hyaluronic acid. The pore size of the mesoporous polydopamine was larger than that of the common polydopamine nanoparticles, and the particle size of MPDA-Fe(III)-DOX-HA nanoparticles was 179 +/- 19 nm. With the presence of ferric ions, the heat generation effect of the MPDA-Fe(III)-DOX-HA nanoparticles in the near-infrared light at 808 nm was enhanced. In addition, the experimental findings revealed that the active targeting of hyaluronic acid to tumor cells mitigated the toxicity of DOX on normal cells. Furthermore, under 808 nm illumination, the MPDA-Fe(III)-DOX-HA nanoparticles demonstrated potent cytotoxicity to HCT-116 cells, indicating a good anti-tumor effect in vitro. Therefore, the system developed in this work merits further investigation as a potential nanotherapeutic platform for photothermal treatment of cancer.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据