4.7 Article

The Adaptor Protein NumbL Is Involved in the Control of Glucolipotoxicity-Induced Pancreatic Beta Cell Apoptosis

期刊

出版社

MDPI
DOI: 10.3390/ijms24043308

关键词

diabetes; epidermal growth factor; glucolipotoxicity; beta cell; apoptosis; Mig6; NumbL; NF-kappa B signaling; Notch signaling

向作者/读者索取更多资源

Avoiding the loss of functional beta cell mass is crucial for diabetes prevention or treatment. This study investigated the molecular mechanisms linking diabetogenic stimuli to beta cell death and identified the dynamic interaction between Mig6 and NumbL. Under glucolipotoxic conditions, siRNA-mediated suppression of NumbL expression prevented apoptosis by blocking NF-KB signaling activation. The interactions among Mig6, NumbL, and TRAF6 activated pro-apoptotic NF-KB signaling and inhibited pro-survival EGF signaling, leading to beta cell apoptosis.
Avoiding the loss of functional beta cell mass is critical for preventing or treating diabetes. Currently, the molecular mechanisms underlying beta cell death are partially understood, and there is a need to identify new targets for developing novel therapeutics to treat diabetes. Previously, our group established that Mig6, an inhibitor of EGF signaling, mediates beta cell death under diabetogenic conditions. The objective here was to clarify the mechanisms linking diabetogenic stimuli to beta cell death by investigating Mig6-interacting proteins. Using co-immunoprecipitation and mass spectrometry, we evaluated the binding partners of Mig6 under both normal glucose (NG) and glucolipotoxic (GLT) conditions in beta cells. We identified that Mig6 interacted dynamically with NumbL, whereas Mig6 associated with NumbL under NG, and this interaction was disrupted under GLT conditions. Further, we demonstrated that the siRNA-mediated suppression of NumbL expression in beta cells prevented apoptosis under GLT conditions by blocking the activation of NF -KB signaling. Using co-immunoprecipitation experiments, we observed that NumbL's interactions with TRAF6, a key component of NFKB signaling, were increased under GLT conditions. The interactions among Mig6, NumbL, and TRAF6 were dynamic and context-dependent. We proposed a model wherein these interactions activated pro-apoptotic NF -KB signaling while blocking pro-survival EGF signaling under diabetogenic conditions, leading to beta cell apoptosis. These findings indicated that NumbL should be further investigated as a candidate anti-diabetic therapeutic target.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据