4.7 Article

Studies on the Anticancer and Antioxidant Activities of Resveratrol and Long-Chain Fatty Acid Esters

期刊

出版社

MDPI
DOI: 10.3390/ijms24087167

关键词

resveratrol esters; resveratrol; long-chain fatty acids; anticancer properties; antioxidant properties

向作者/读者索取更多资源

By lipophilizing RES with fatty acids, several esters were obtained and evaluated for their anticancer and antioxidant properties against different types of cancer cells, as well as their antioxidant effects on normal cells. The RES derivatives showed enhanced biological activity and potential applications in cancer prevention and treatment, as well as oxidative stress suppression.
Resveratrol (RES) is gaining recognition as a natural bioactive compound. To expand the possible applications of RES with its enhanced bioactivity as well as to increase the health benefits of long-chain fatty acids, a lipophilization process of RES was performed using three fatty acids: palmitic acid (PA), oleic acid (OA), and conjugated linoleic acid (CLA). The obtained mono-, di-, and tri-esters of RES were evaluated for their anticancer and antioxidant properties against lung carcinoma (A549), colorectal adenocarcinoma (HT29), and pancreatic ductal adenocarcinoma (BxPC3) cell lines. Human fibroblast (BJ) cells were used as a control. Several parameters were investigated: cell viability and apoptosis, including the expression of major pro- and anti-apoptotic markers, as well as the expression of superoxide dismutase, a key enzyme of the body's antioxidant barrier. Three of the obtained esters: mono-RES-OA, mono-RES-CLA, and tri-RES-PA, which significantly reduced the tumor cell viability up to 23%, at concentrations 25, 10, 50 mu g/mL, respectively, turned out to be particularly interesting. The above-mentioned resveratrol derivatives similarly increased the tumor cells' apoptosis by modifying their caspase activity of pro-apoptotic pathways (p21, p53, and Bax). Moreover, among the mentioned esters, mono-RES-OA induced apoptosis of the analyzed cell lines most strongly, reducing the number of viable cells up to 48% for HT29 cells versus 36% for pure RES. Furthermore, the selected esters exhibited antioxidant properties towards the normal BJ cell line by regulating the expression of major pro-antioxidant genes (superoxide dismutases-SOD1 and SOD2) without the effect on their expression in the tumor, and therefore reducing the defense of cancer cells against increased oxidative stress induced by high ROS accumulation. The obtained results indicate that the esters of RES and long-chain fatty acids allow enhancement of their biological activity. The RES derivatives have the potential for being applied in cancer prevention and treatment, as well as for oxidative stress suppression.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据