4.7 Article

Comprehensive Analysis of bHLH Transcription Factors in Ipomoea aquatica and Its Response to Anthocyanin Biosynthesis

期刊

出版社

MDPI
DOI: 10.3390/ijms24065652

关键词

gene family; cis-acting element; gene duplication events; evolutionary relationship; gene expression

向作者/读者索取更多资源

This study identified 157 bHLH genes in the I. aquatica genome, and further investigation revealed significant differences in the expression levels of 13 genes in purple-stemmed I. aquatica. Analysis of the promoter regions of these differentially expressed genes showed that light-responsive elements were the most abundant, while plant growth and development-responsive elements were the least.
The basic helix-loop-helix (bHLH) proteins compose one of the largest transcription factor (TF) families in plants, which play a vital role in regulating plant biological processes including growth and development, stress response, and secondary metabolite biosynthesis. Ipomoea aquatica is one of the most important nutrient-rich vegetables. Compared to the common green-stemmed I. aquatica, purple-stemmed I. aquatica has extremely high contents of anthocyanins. However, the information on bHLH genes in I. aquatica and their role in regulating anthocyanin accumulation is still unclear. In this study, we confirmed a total of 157 bHLH genes in the I. aquatica genome, which were classified into 23 subgroups according to their phylogenetic relationship with the bHLH of Arabidopsis thaliana (AtbHLH). Of these, 129 IabHLH genes were unevenly distributed across 15 chromosomes, while 28 IabHLH genes were spread on the scaffolds. Subcellular localization prediction revealed that most IabHLH proteins were localized in the nucleus, while some were in the chloroplast, extracellular space, and endomembrane system. Sequence analysis revealed conserved motif distribution and similar patterns of gene structure within IabHLH genes of the same subfamily. Analysis of gene duplication events indicated that DSD and WGD played a vital role in the IabHLH gene family expansion. Transcriptome analysis showed that the expression levels of 13 IabHLH genes were significantly different between the two varieties. Of these, the IabHLH027 had the highest expression fold change, and its expression level was dramatically higher in purple-stemmed I. aquatica than that in green-stemmed I. aquatica. All upregulated DEGs in purple-stemmed I. aquatica exhibited the same expression trends in both qRT-PCR and RNA-seq. Three downregulated genes including IabHLH142, IabHLH057, and IabHLH043 determined by RNA-seq had opposite expression trends of those detected by qRT-PCR. Analysis of the cis-acting elements in the promoter region of 13 differentially expressed genes indicated that light-responsive elements were the most, followed by phytohormone-responsive elements and stress-responsive elements, while plant growth and development-responsive elements were the least. Taken together, this work provides valuable clues for further exploring IabHLH function and facilitating the breeding of anthocyanin-rich functional varieties of I. aquatica.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据