4.5 Article

Influence of pressure on structural stability and physical properties of NaCaZ (Z=N, P and As) half-Heusler semiconductor materials

期刊

出版社

WORLD SCIENTIFIC PUBL CO PTE LTD
DOI: 10.1142/S0217979224501224

关键词

DFT; half-Heusler; pressure; optical properties; elastic properties

向作者/读者索取更多资源

Using density functional theory (DFT), the properties of NaCaZ (Z=N, P, As) half-Heusler (HH) semiconductor materials under pressure were studied. The results show that NaCaZ is chemically stable in the a-phase structure and exhibits semiconducting behavior with an indirect bandgap. Optical parameters such as complex dielectric function, absorption coefficient, and refractive index were investigated, revealing low reflectivity and high absorption coefficient in the low ultraviolet and visible regions. The materials were found to be mechanically and dynamically stable, making them promising for applications in solar cells, optoelectronics, and 2D devices.
Based on density functional theory (DFT), the structural and physical properties of NaCaZ (Z=N, P, As) half-Heusler (HH) semiconductor materials have been studied under pressure up to 20GPa. The ground state results show that the NaCaZ are chemically stable in a-phase structure and exhibit semiconducting behavior with an indirect bandgap. The optical parameters like the real and imaginary components of complex dielectric function, the absorption coefficient and refractive index are investigated and discussed. The obtained results show that NaCaZ have low value of reflectivity and high absorption coefficient in low ultraviolet and visible regions and exhibit small changes under pressure. Pressure-based elastic constants and their derivative parameters show that NaCaZ are mechanically stable and have brittle nature. Above 10GPa, NaCaP and NaCaAs have ductile nature. The phonon dispersions calculations with pressure show that NaCaN and NaCaP are dynamically stable, in contrast, NaCaAs is dynamically unstable at ambient pressure. Above 10GPa, the studied compounds are dynamically stable. The mechanically, dynamically stable with low reflectivity and high absorption coefficient in the low ultraviolet and visible regions make these materials more promising as absorbers of solar cells, optoelectronic and 2D applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据