4.7 Article

Sulfur-Rich N-Doped Co9S8 Catalyst for Highly Efficient and Durable Overall Water Electrolysis Application

期刊

出版社

WILEY-HINDAWI
DOI: 10.1155/2023/4176447

关键词

-

向作者/读者索取更多资源

A facile template-free controllable growth method was developed to synthesize polyhedron-like CoS on microporous Ni foam. The electrochemical performance of the CoS catalyst was significantly improved by nitrogen doping and sulfur incorporation, leading to enhanced electrocatalytic activities for OER and HER.
Facile template-free controllable growth of freestanding polyhedron-like CoS onto microporous Ni foam with three-dimensional architecture via a mild hydrothermal technique is reported. The as-obtained CoS catalyst phase was first tailored to N-Co9S8 (nitrogen doped Co9S8), and its inherent reaction kinetics and conductivity were then enhanced through sulfur incorporation via a hydrothermal process. The electrochemical performance of the pristine CoS and a sulfur-enriched N-Co9S8 (S, N-Co9S8) electrode in alkaline 1.0 M KOH was examined. The optimized polyhedral S, N-Co9S8 structured catalyst exhibits significantly enhanced electrocatalytic activity for both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). As a result, low overpotentials of 244 and -92 mV is required to achieve the current density of 10 mA cm(-2) for the OER and HER, respectively. Furthermore, when the polyhedral S, N-Co9S8 catalyst was employed as a bifunctional catalyst in a two-electrode electrolyzer cell exhibiting a cell voltage of 1.549 V at 10 mA cm(-2) and demonstrates excellent long-term (50 hrs.) chronopotentiometric electrolysis at various current rate, reveals excellent bifunctional OER and HER activities at different applied current densities. The superior OER and HER activities of the S, N-Co9S8 catalyst is result of the improved electronic conductivity and enhanced intrinsic reaction kinetics, which led to the enhanced electrocatalytically active sites after the incorporation of heteroatoms in the catalyst structure.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据