4.7 Article

Enhanced flame retardancy and toughness of eco-friendly polyhydroxyalkanoate/bentonite composites based on in situ intercalation of P-N-containing hyperbranched macromolecules

出版社

ELSEVIER
DOI: 10.1016/j.ijbiomac.2023.123345

关键词

Polyhydroxyalkanoates; Bentonite; In situ intercalation; Hyperbranched macromolecules; Flame retardancy

向作者/读者索取更多资源

In this study, an in situ polymerization method was employed to intercalate P-N-containing hyperbranched macromolecules (HBM) among BNT layers (HBM-B) to improve the flame retardancy and mechanical properties of PHA. The LOI of the PHA/HBM-B composite reached 27.6% when the mass ratio of HBM to BNT was 75/25. When the content of HBM-B reached 15 wt%, the LOI of PHA-Based composites reached 29.6% and achieved a UL-94 rating of V-0, meeting the standard of flame-retardant material.
Polyhydroxyalkanoates (PHA) is a biodegradable polyester, and its application range is limited by the poor flame retardancy and low modulus. Bentonite (BNT) as a green inorganic filler can improve the modulus and flame retardancy of PHA to a certain extent. An in situ polymerization method was designed to intercalate P-N-containing hyperbranched macromolecules (HBM) among BNT layers (HBM-B) and to improve the flame retardancy while improving the dispersion of BNT in the PHA matrix. The layer spacing of BNT was increased from 1.2 nm to 4.5 nm. The effect law of the joint action of in situ intercalation of BNT and the HBM on flame retardancy and mechanical properties of PHA was systematically studied. The HBM-B showed stronger flame retardancy when the mass ratio of HBM to BNT was 75/25. The limiting oxygen index (LOI) of the PHA/HBM-B composite was increased to 27.6 % while maintaining good toughness. Compared to the physical blend of HBM and BNT (HBM/ B), the elongation at break of PHA/HBM-B25 composites can be increased by up to 10 times. When the content of HBM-B is up to 15 wt%, the LOI of PHA-Based composites can reach 29.6 % and the UL-94 rating reaches V-0, which meets the standard of flame-retardant material. Therefore, the present work is expected to expand the application of PHA-based composites in the field of flame retardancy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据