4.7 Article

Carboxymethylcellulose reinforced, double-network hydrogel-based strain sensor with superior sensing stability for long-term monitoring

出版社

ELSEVIER
DOI: 10.1016/j.ijbiomac.2023.124536

关键词

Double -network hydrogel; Strain sensor; Sensing stability

向作者/读者索取更多资源

A strain sensor based on double-network hydrogel has been developed, which has excellent mechanical properties and sensing stability, making it suitable for long-term tracking of human motions.
Hydrogel-based strain sensors have garnered significant attention for their potential for human health monitoring. However, its practical application has been hindered by water loss, freezing, and structural impairment during long-term motion monitoring. Here, a strain sensor based on double-network (DN) hydrogel of polyacrylamide (PAAm)/carboxymethylcellulose (CMC) was developed in a ternary solvent system of lithium chloride (LiCl)/ethylene glycol (EG)/H2O through a facile one-pot radical polymerization strategy. The incorporation of EG effectively mitigated the hydration of lithium salts by generating stable ion clusters with Li+ and stronger hydrogen bonds within the polymer matrix. The sensor demonstrated excellent mechanical properties, including a stretchability of 1858 %, toughness of 1.80 MJ/m3, and recoverability of 102 %. Furthermore, the LiCl/EG/ H2O ternary system resulted in high conductivity, excellent anti-freezing performance, and superior sensing stability. In addition, the sensor exhibited remarkable sensitivity, enabling the monitoring of human movements ranging from subtle to significant deformations, including throat motion and bending of the elbow, wrist, finger, and lower limb. This study presents a viable approach for constructing hydrogel-based strain sensors with exceptional sensing stability for long-term tracking of human motions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据