4.6 Article

Integration of PCL and PLA in a monolithic porous scaffold for interface tissue engineering

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jmbbm.2016.06.021

关键词

Functionally graded scaffold; Interface tissue engineering; Melt mixing; Particulate leaching; Pore size gradient; Chemical gradient

向作者/读者索取更多资源

A novel bi-layered multiphasic scaffold (BLS) have been fabricated for the first time by combining melt mixing, compression molding and particulate leaching. One layer has been composed by polylactic acid (PLA) presenting pore size in the range of 90-110 mu m while the other layer has been made of polycaprolactone (PCL) with pores ranging from 5 to 40 mu m. The different chemo-physical properties of the two biopolymers combined with the tunable pore architecture permitted to realize monolithic functionally graded scaffolds engineered to be potentially used for interface tissues regenerations. BLS have been characterized from a morphological and a mechanical point of view. In particular, mechanical tests have been carried out both in air and immersing the specimens in phosphate buffered saline (PBS) solution at 37 degrees C, in order to evaluate the elastic modulus and the interlayer adhesion strength. Fibroblasts and osteoblasts have been cultured and co-cultured in order to investigate the cells permeation trough the different layers. The results indicate that the presented method is appropriate for the preparation of multi-phasic porous scaffolds with tunable morphological and mechanical characteristics. Furthermore, the cells seeded were found to grow with a different trend trough the different layers thus demonstrating that the presented device has good potential to be used in interface tissue regeneration applications. (C) 2016 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据